

t

BR7501619

DETERMINAÇÃO DA CONSTANTE DE DECAIMENTO λ_F PARA A FISSÃO ESPONTÂNEA DO ²³⁸U PELO MÉTODO DOS TRAÇOS DE FISSÃO EM MICA

Cleide Renner

DISSERTAÇÃO E TESE - IEA 014

MARÇO/1976

MARÇO/1978

DETERMINAÇÃO DA CONSTANTE DE DECAIMENTO λ_{μ} PARA A FISSÃO ESPONTÂNEA DO ²³⁶ U PELO METODO DOS TRAÇOS DE FISSÃO EM MICA

Cleide Renner

Dissertação para obtenção do T(sulo de "Mentre em Ciências" - Orientador Dr. Meuro Cottan). Apresentata em 1970 e defendida em 20 de maio de 1971, na Écuale Politácnica da Universidade de São Paulo.

APROVADA PARA PUBLICAÇÃO EM JANEIRO/1976.

CONSELHO DELIBERATIVO

MEMBROS

Klaus Reinach — Piesidente Roberto D'Utra Vaz Helcio Modesto da Costa Ivano Humbert Marchesi Admar Cervellini

PARTICIFASTES

Regina 🤟 🗴 e Azevedo Beretta Flávic 🧯

SUPERINTEN JE TTE

Rontel - Filbeiro Pieroni

INSTITUTO DE ENERGIA ATÓMICA Ceixe Postel 11,049 (Pinheiros) Cidede Universitária "Armando de Salles Oliveire" SÃO PAULO - BRASIL

NOTA: Este trabalho foi conferido pelo autor depois de compristo e sua redação está conforme o original, sem gualquer correção ou mudança.

INDICE

Pápina

	1
CAPITULOI	
PRINCIPIO DO MÉTODO DA DETERMINAÇÃO DA CONSTANTE DE DECAIMENTO PARA A FISSÃO ESPONTÂNEA DO ^{STA} U PELA CONTAGEM DOS TRAÇOS DE FISSÃO EM MICA	2
1.1 — Princípio do método no caso de um fluxo de néutrons de distribuição conhecide 1.2 — Expressão para F. na aproximação Maxwelliana para a distribuição dos néutrons	2 4
CAPITULO II	
CARACTERIS FICAS DA DETECÇÃO DE FRAGMENTOS DE FISSÃO PELA MICA MUSCOVITA	6
H.1 - Processo de revelação dos traços	6 7
CAPITULO III	
RESULTADOS E MEDIDAS ENVOLVIDAS NA DETERMINAÇÃO DE A _F	9
HI: 1 - Características do tocal de irradiação . 111: 2 - Escolha do material para a obtenção de A. ^m	9 11
111.2-a — Considerações gerais 111.2-b - Escolha do ouro para a medicia da atividade saturada A ^m induzida por	11
néutrons térmicos	12
III.2.C ~ Medida da atividade induzida no ouro	13
10.3 = 0 transformed on standard s	13
111.3-a — Obtenção de ρ_{ij} 111.3-b — Obtenção de ρ_{ij}	14
CAPITULO IV	
RESULTADOS OBTIDOS PARA λ _F	15
IV.1-a – Resultado obtido para λ_p através da distribuição real do fluxo da néutrono IV.1-b – Resultado obtido para λ_p através da aproximação Maxwelliana para o fluxo	16
de néutrons	16
CAPÍTULO V	
CONCLUSÃO	57

DETERMINAÇÃO DA CONSTANTE DE DECAIMENTO λ_{p} PARA A FISSÃO ESPONTÂNEA DO ²³⁸U PELO MÉTODO DOS TRAÇOS DE FISSÃO EM MICA

Cleide Renner

INTRODUÇÃO

1.

Em 1059 (alk e Barros¹⁹⁹⁶⁾ observaram, com o tarz co de oecroscópio eletrônico, traços lineares em folhas de mula que haviam sido tiradiadas com fragmentos de fissão. Esses traços, regiões lanificadas deixadas pela passagem dos fragmentos altamento romzedos, com um diâmetro da ordem de 100 Å, desapareciam gradativamente quando sujeitos a uma exposição prolongada ao feixe de elétrons do microscópio.

Outros pesquisadores dedicaram-se a explo ai esse processo de detecção observando que ele podia ser aplicado a vários tipos de partículas ionizadas, uma vez que se escolhessem materiais convenientes, Observaram, também, que mediante ataque químico os traços postiam ser fixados e amplitados de modo a se tornarem visíveis em microscópio óptico^(FIG3).

Encontramise na literatura^(F-163, F-165) tabelas que dão o material apropriado a cada tipo de partícula. Para a detecção de fragmentos da fissão esses materiais são: mica, vídro, mylar^(F-165), etc.

Neste trabalho utilizou-se este tipo de detector, em particular a mica, na detecção de fragmentos de fissão, pelas inúmeras vantagens que apresenta, e saber

- a) insensibilidade a outras radiações ("background") teis como α , β , γ , nêutrons, etc.
- b) alta eficiência de detecção,
- c) estabilidade da eficiência com o tempo, por não necessitar sistemas eletrônicos associados e pela sua insensibilidade à variações da temperatura embiente,
- d) simplicidade na técnica de revelação.

A finalidade principal do desenvolvimento deste método foi a sua eplicação na determinação de constante de decaimento, $\lambda_{\rm p}$, para a fissão espontânea do ^{2.1.8}U, uma vez que as metidas encontradas na literatura para esta constante abrangem um intervalo de variação muito grande. Na tabela I são dadas as medidas de $\lambda_{\rm p}$, obtides por alguns pesquisadores, podendo-se notar um intervalo de variação que vai de $(5,3\pm0,9)\times10^{-1.7}$ a $(11,9\pm1,0)\times10^{-1.7}$ anos.¹

O método aqui empregado envolve o conhecimento das seguintes medidas:

- número de traços resultantes da fissão espontánea do ²³⁸U;
- b) número de traços resultantes da fissão induzida do 135 U por nêutrons têrmicos,
- etividade induzida por estes néutrons em folhas de ouro.

Para a obtenção do número de traços de fissão espontânea, foram preparadas amostras de urânio natural em comuto com folhas de mica, que permaneceram seladas durante aproximadamente 4 anos.

O velor aqui obtido para esta constante está para sei publicadu em trabalho de colaboração com Miriam P. T. Leme e Mauro Cattani, no nº 4, Vol. 91 da revista "Nuclear Instruments and Methods.".

CAPÍTULO I

PRINCIPIO DO MÉTODO DA DETERMINAÇÃO DA CONSTANTE DE DECAIMENTO PARA FISSÃO ESPONTÂNEA DO ^{2 18} U PELA CONTAGEM DOS TRAÇOS DE FISSÃO EM MICA

1.1 - PRINCIPIO DO MÉTODO NO CASO DE UM FLUXO DE NEUTRONS DE DISTRIBUIÇÃO CONHECIDA

Construindo se uma amostra constituída por uma camada de urânio natural em contato com uma folha de mica, os fragmentos provenientes da fissão espontânea do isótopo ³³⁸ U vilo sendo nela registrados através de traços. A densidade desses traços para um tempo τ de repouso de amostra é expressa por ^(FI64).

$$\rho_{\rm e} = \frac{\lambda_{\rm F}}{\lambda_{\rm D}} \, N \, \mu \, C^{2.3.8} [1 + \exp(-\lambda_{\rm D} \tau)] \, E \, (R^{2.3.6}, \mu)$$
 (1-1)

onde:

 $\lambda_{\rm c}$ é a constante de décaimento para a fissão espontánea do ²³⁸U;

 $\lambda_{\rm D}$ é a constante de decaimento total do ²³⁶U;

N é o número de átomos de urânio por unidade de massa de urânio natural;

- μ é a espessura da camada de urânio expressa em unidades de massa por unidade de área;
- C²³⁸ é a fração de átomos de ²³⁸U no urânio natural;
- R²³⁸ é o alcance médio dos fragmentos de fissão do ²³⁸U na amostra a
- E(R²³⁸, μ) é a eficiência total de detecção destes fragementos, isto é, é a relação entre o número de fissões que ocorreram na amostra e o número de traços observáveis na mica.

O valor de constante λ_0 é de ordem de 10⁻¹⁰ anos⁻¹ (Le67), portento, se $\tau << 10^{10}$ anos, a expressão (I-1) pode ser aproximada para:

$$\rho_{0} = N C^{230} \lambda_{F} \tau \mu E(R^{230}, \mu)$$
 (1.2)

de onde se tira;

$$\frac{F_{\mu}}{N} = \frac{F_{\mu}}{N C^{2.3H} \tau \mu F(R^{2.3H}, \mu)}$$
(1.3)

A determinação do projuto (N μ E) pode ser feita instruzindo-se a fissão do isótopo ^{2.15}U, criatido na ajnostra, por nêutrons térmicos, encendendo-se por nêutrons térmicos os que estão em equilíbrio térmico com o isero inodicador de um reator térmico.

Suponha-se que esses néutrons obedeçam, no intervalo de energia térmica de 0 a E_M, à função de distribuição de fluxor

onde

é é o Nuko desses néutrons (isto é, o número de néutrons com energia abaixo de t_{im} que atravessa, por segundo, uma área de tirm²) e

D(E) é a sua função de distribilição, obedecendo a normalização

O numero de fissões induzides no ^{2,3,5}U que ocorrem por cm² palamostra exposta a esse fiuxo de néutrons durante um tempolt, e que é detectado pela mica, é expresso por

$$\rho_{i} = N \mu C^{235} \left[f_{A}^{EM} \phi D(E) \sigma^{135} (E) dE \right] E (R^{235}, \mu) t$$
(14)

unde:

C^{2,35} é a fração de átomos de ^{2,35} U no urânio natural,

R^{2,35} é o alcance médio dos fragmentos de fissão de ^{2,3,5}U na amostra de urânio,

n²³⁵(E) é a secção de de choque para fissão (induzida por nêutrons) do ²³⁴U, em funcão da energia dos nêutrons.

Da relação (1-4) obtém-se:

$$N \mu E(R^{235}, \mu) = \frac{\rho_i}{C^{235} t_0^{E_M} \phi D(E) \sigma^{235}(E) dE}$$
(1.5)

O fluxo ϕ , por sua vez, pode ser colocado em termos da atividade saturada, A_s^m , por ele induzida em um material que se torne radioativo por reação com nêutrons tórmicos^(Pr58), isto é:

$$\phi = \frac{A_s^m}{\int_0^{E_m} D(E) \sigma^m (E) dE}$$
(1.6)

4 onde

 $\sigma^m(E)$ é a seção de choque de ativação do material em função da enargia dos nêutrons.

Como será visto em detalhes, no capítulo II-2, têm-se que:

$$\mu E(R^{238}, \mu) = \mu E(R^{235}, \mu)$$
 (i.7)

Desta relação e das expressões (1-3), (1-4), (1-5), (1-6) chega-se finalmente a:

$$\lambda_{\rm F} = \frac{\rho_{\rm e} \, {\rm C}^{235} \, {\rm A}_{\rm s}^{\rm m} \, \int_{0}^{{\rm E}\,{\rm M}} {\rm D}({\rm E}) \, \sigma^{235} \, ({\rm E}) \, {\rm d}{\rm E}}{\rho_{\rm i} \, {\rm C}^{238} \, r \, \int_{0}^{{\rm E}\,{\rm M}} {\rm D}({\rm E}) \, \sigma^{\rm m} \, ({\rm E}) \, {\rm d}{\rm E}}$$
(1.8)

. - EXPRESSÃO PARA $\lambda_{\rm p}$ na aproximação maxwelliana para a distribuição dos néutrions

A densidade n_{Max} dos neutrons térmicos de um reator obedece a uma distribuição bem próxima à Maxwelliens^(Be64). Neste caso, a função de distribuição do fluxo de neutrons em velocidade, v, será dada por:

$$\phi_{max}(v) = \eta_{max}(v)$$

onde n'max, (v) é a distribuição Maxwelliane dade por^(Hu63).

$$n_{max}(v) = n_0 4\pi \left(\frac{m}{2KT}\right)^3 - v^2 \exp\left(-\frac{mv^2}{2KT}\right)$$
 (1.9)

e onde,

- $n_{\rm p}$ é o número total de nêutrons por unidade de volume
- k é a constante de Boltzmann
- T é a temperatura característica da Maxwelliana, e,
- m é a massa do nêutron.

Substituindo-se a expressão (1-9) na (1-8) e fazendo-se a transformação de variáveis de v para E (energia civiética do néutron) chega-se a:

$$\phi_{méx}(\mathbf{E}) d\mathbf{E} = \phi \frac{\mathbf{E}}{\mathbf{E}_{o}^{2}} \exp(-\frac{\mathbf{E}}{\mathbf{E}_{o}}) d\mathbf{E}$$
(1.10)

onde é é o fluxo de nêutrons integrado na energia a onde chamou-se o parâmetro ist de Eo.

Nesta aproximação torna-se aplicável o formalismo desenvolvido por Westcott^(WeBG), que vem simplificar e expressão (I-B) na obtenção de $\lambda_{\rm F}$. Esse formalismo define um fator, g(T), que se encontra tabelado em função de temperatura T do espectro Maxwelliano e, é dado por.

$$f_{max}(\mathbf{T}, \mathbf{v}) \mathbf{v} \, \sigma^{\mathbf{x}}(\mathbf{v}) \, d\mathbf{v}$$

$$f'(\mathbf{T}) = \frac{\int \mathbf{n}_{max}(\mathbf{T}, \mathbf{v}) \, \mathbf{v} \, \sigma^{\mathbf{x}}(\mathbf{v}) \, d\mathbf{v}}{\mathbf{n}_{o}(\mathbf{T}) \, \sigma^{\mathbf{x}}_{o} \, \mathbf{v}_{o}}$$
(1.11)

onde o índice x refere-se ao material exposto ao fluxo de néutrons,

- n_(T) é a densidade dos néutrons para o espectro Maxwelliano de temperatura T,
- a secção de choque de ativação do material em questão, em função da velocidade do nêutron,

 $\sigma_{\rm p} x$ é a secção de choque do material x para néutrons de velocidade v = 2200 m/s.

Simplificando-se esta expressão, obtém-se:

$$\int \varphi_{m \, \text{ax}}(\mathbf{v}) \, \sigma^{\mathbf{x}}(\mathbf{v}) \, \mathrm{d}\mathbf{v} = \mathbf{g}^{\mathbf{x}}(\mathbf{T}) \, \mathbf{n}_{\mathbf{o}}(\mathbf{T}) \, \mathbf{g}_{\mathbf{o}}^{\mathbf{x}} \, \mathbf{v}_{\mathbf{g}} \tag{1.12}$$

Substituíndo-se os valores das integrais dadas na expressão (I-8) pela (I-12) chega-se a:

$$\lambda_{F} = \frac{\rho_{0} A_{s}^{m} C^{235} \sigma_{0}^{235} g^{235}(T)}{\rho_{1} \tau C^{238} \sigma_{0}^{m} g^{m}(T)}$$
(I-13)

Pela expressão (I-11), nota-se que o fator $g^{X}(T)$ é próximo a unidade, independentemente da distribuição dos nêutrons, n_{Max}, (T,v), quando $\sigma^{X}(v)$, segue de perto a lei $\frac{1}{2}$ dada por:

$$\sigma^{*}(v) = \frac{v_{o}^{*}v_{o}}{1 - 14}$$

Como a secção de choque de fissão do ²³⁵ U segue de perto esta lei (como pode ser visto pela figura 5) é conveniente que se escolha, na obtenção de A^m_{μ} , um material que também obedeça esta lei. Com este procedimento, a precisão do valor de λ_{μ} dado pelas expressões (1-8) e (1-13) não irá depender criticamente da precisão com que se conhece o espectro dos néutrons. Esta conclusão é importante uma vez que as outras medides que entram na determinação de λ_{μ} , podem ser obtidas com precisão melhor do que a precisão com que se conhece este espectro.

No capítulo IV serão dados os valores de λ_p calculados: e) com a distribuição experimental do fluxo de néutrons, e b) com e aproximação Maxwelliana deste mesmo fluxo. No primeiro caso os desvios a lei 1/v nas secções de choque serão levados em conta usando ajustes empíricos nos pontos experimentais obtidos para as mesmas. No segundo caso, este desvio será (evado em conta através dos fatores tabelados g(T).

CAPITULO II

CARACTERISTICAS DA DETECÇÃO DE FRAGMENTOS DE FISSÃO PELA MICA MUSCOVITA

II.1 - PROCESSO DE REVELAÇÃO DOS THAÇOS

Quando fragmentos de fissão penetram em alguns materiais, como por exemplo, mica, vidro mylar^(F16b), etc., etes deixi mino entorno da sua passagem uma estrutura desordenada, que é observada em microscópio eletrônico como tinhas escuras ou "traços". Essa estrutura é quimicamente mais reativa do que nimetrial não danificado, logo, mediante ataque químico, pode-se revetar ou fixar esses traços pela sua dissolução. Formam-se, assim, pequenos orifícios e, como o material não danificado pode também ser dissolvido pelo agente químico, prolongando-se o tempo de ataque, estes oríficios vão sendo alargados. Esse alargamento pode ser tal, de modo a tornar os traços visíveis em microscópio óptico. Pode ocorrer, no entanto, que um traço não consiga ser revelado pelo ataque químico. Com efeito, seja v_a a velocidade de dissolução da superfície do material e v_T a velocidade de dissolução ao longo do traço e seja D o ângulo que o traço forma com a superfície do material, como mostra o esquema abaixo.

Se $v_{g} > v_{T}$ sen ϑ , a superfície será dissolvida antes que o traço seja revelado. Portanto, o ângulo mínimo que um traço deve formar com a superfície ps. a poder ser revelado, será:

$$\theta_{\rm c} = \arccos(v_{\rm s}/v_{\rm t})$$

Para a mica têm-se $v_s << v_T$ ^(FI65) e a eficiência de revelação é praticamente 100%. Para o vidro $\theta_c = 50^{\circ}$ (FI65), o que torna sua eficiência relativamente baixa.

Neste trabelho, entre os materiais que apresentavam as melhores condições de eficiência, escolheu-se a mica muscovita para a detecção de fragmentos de fissão pelas facilidades que ela oferece tanto quanto ao manuseio como quanto à obtenção.

A mice muscovita é um silicato cristellos cuje natureze de ecoplemento permite que ela seje facilmente separada em folhas finas (- 10 μ de espessura). O agente químico que se adapte à revelação de t aços no seu caso é o HF. Pela natureza da sus rede cristellos, os traços ampliados tomam a forma de losangos, o que possibilita facilmente diferenciá-los de queisquer imperfeições da superfície.

Ná Figura 1, á dado o comportamento do tamenho dos traços em função do tempo de ataque por HF de concentração 48,9%, à temperatura de 23°C, podendo-se acelerar o processo pela elevação desta temperatura. O tampo de ataque ou de revelação deve ser escolhido de acordo com o que se vai medir atravér dos traços (distribuição angular, densidade de traços, etc). No caso de medidas de altas densidades, este tempo deve ser suficiente para torner os traços facilmente observáveis, sem ocorrer a superposição dos mesmos.

No presente trabalho teve-se necessidade de medidas de densidade menores que 5.10ª traços cm², tendo sido escolhido como ideal o tempo de revelação de 3 horas.

II.2 - EFICIÊNCIA DE DETECÇÃO DOS FRAGMENTOS DE FISSÃO

Na detecção de fragmentos de fissão pela mica deve-se levar em conta dois tipos de eficiência:

1) uma eficiência, η , que será chamada de eficiência óptica, definida por:

nº de traços observáveis na mica

 $\eta = \frac{1}{n9}$ de fragmentos que atingem a mica

 uma eficiência ε(μ) que depende da geometria do conjunto formado pela fonte de fissão e mica, da espessura, μ, da fonte e do alcance, R, dos fragmentos na fonte.

A eficiência optica, η , é constante desde que sejam mantides as mesmas condições de revelação e as mesmas condições no sistema de leitura do microscópio. Gold, Armani e Roberts^(Go68) determinaram esta eficiência através da medida do número de traços observados em folhas de mica colocadas em contato direto com fontes de fragmentos calibradas. Obtiveram $\eta = 0.948$. Este resultado confirma a afirmação já feita anteriormente de que a eficiência de detecção da mica é bastante alta. Pode-se explicar o fato de η ser menor que a unidade pela existência de efeitos de "threshold". Com efeito, para que um traço possa ser observado ao microscópio ele deve ter um certo comprimento mínimo. Como os fragmentos possuem uma certa distribuição de energia devido ao próprio processo de fissão e a efeitos de absorção na fonte, os traços formados terão uma certa distribuição em comprimentos, com uma certa porcentagem caindo abeixo deste comprimento mínimo.

A eficiência $\varepsilon(\mu)$, no caso em que a fonte está em contato direto com a mica, é dada pela relação:

$$\epsilon(\mu) = \frac{N(\mu)}{F(\mu)} \tag{11-1}$$

onde

- N(μ) é o número de fragmentos que escapam por unidade de área pela superfície da fonte de espessura e
- F(µ) é o número de fragmentos sendo emitidos por unidade de área, por esta fonte.

A eficiência total será dada por:

$$\mathsf{E}(\mu) = \eta \, \mathsf{e}(\mu) \tag{11-2}$$

Gold, Armani e Roberts^(Go68) obtiveram uma expressão teórica para esta eficiência $E(\mu)$ beseados nas seguintes considerações:

1) os fragmentos são emitidos isotropicamente pela fonte.

2) a densidade de eventos de fissão é igual em todos os pontos da fonte.

a espessura, jr., da fonte (expressa em unidades de massa por unidade de área) é menor que o alcance dos fragmentos.

A expressão por eles obtida, considerando que todos os fragmentos possuem um alcance \overline{R} constante, foi:

$$E(\mu) = \eta \left(1 - \frac{\mu}{2\overline{R}}\right) \qquad \mu < \overline{R} \qquad (11-3)$$

resulta em

$$\mathsf{E}(\mu) = \eta \qquad \mu \ll \mathsf{R} \qquad (11-4)$$

No caso em que $\mu >> R_{max}$ (onde R_{max} , é o alcance máximo dos fragmentos na fonte), n número de fragmentos, N_µ, que escapa pela superfície da fonte permanece constante independendo da espessura da mesma e obtém-se para E(μ):

$$E(\mu) = \eta \frac{N_{\perp}}{F(\mu)}$$
(11-5)

Chamando-se de La densidade de eventos de fissão na fonte têm-se:

$$\mathbf{F}(\boldsymbol{\mu}) = \mathbf{I}\boldsymbol{\mu} \tag{11-6}$$

Das expressões (II-5) e (II-6) obtém-se:

$$\mu E(\mu) = \frac{\eta N_{\mu}}{I} = CONSTANTE \qquad \mu >> R_{max} \qquad (11-7)$$

As expressões até aqui obtidas para $E(\mu) \in \mu E(\mu)$ são dependentes do alcance dos fragmentos na fonte. No caso dos fragmentos de fissão do ²³⁸U e ²³⁵U provenientes de uma fonte de urânio natural, tem-se que os alcances R²³⁸ e R²³⁵ são praticamente os mesmos (~ 10 mg/cm²). Portanto, os resultados dados pelas expressões (11-3), (11-4) e (11-7) são os mesmos nos dois casos.

O presente trabalho exige o conhecimento da relação $\mu E(\mu)$ para a detecção dos fragmentos da fissão espontânea do ²³⁸U provenientes de uma fonte de urânio naturel. Uma vez que a relação $\mu E(\mu)$ é a mesma tanto no caso ca fissão do ²³⁸U como do ²³⁵U, ela pode ser determinada indiretamente, segundo a expressão (1-5), através da fissão do ²³⁵U induzida por um fluxo de néutrons térmicos. No caso em que forem utilizadas fontes de espessura $\mu < R_{Máx}$, a relação $\mu E(\mu)$ irá variar com a aspessura de fonte. Se, ao invés, ficar satisfeita e condição $\mu > R_{Máx}$, esta relação permanecerá a mesma para qualquer espessura. Neste último ceso, pode-se fazer a detecção dos fragmentos de fissão do ²³⁸U com uma fonte de urânio natural de uma certa espessura e determinar-se o valor de $\mu E(\mu)$ através da fissão do ²³⁵U com uma fonte que não tenha exatamente a mesma espessura.

CAPITULO III

RESULTADOS E MEDIDAS ENVOLVIDAS NA DETERMINAÇÃO DE λ_{e}

III.1 - CARACTERISTICAS DO LOCAL DE IRRADIAÇÃO

D local escolhido para as irradiaões das amostras foi a saída do canal de irradiação radial nº 10, do reator IEA-R1 do Instituto de Energia Atômica de São Paulo, onde se conhece a distribuição do fluxo de nêutrons. Este feixe de nêutrons tem um diâmetro transversal da ordem de 3,5 cm e foi verificado, através da medida da atividade induzida em folhas de ouro, que ao longo deste diâmetro o fluxo é uniforme. A distribuição deste fluxo foi determinada pelo método do espectrômetro de cristal por R. Fulfaro^(Fu 20). Aos pontos experimentais compreendidos por nêutrons de comprimentos de onda entre 0,7 Å e 2,9 Å foi ajustada uma curva do tipo $D(\lambda) = K\lambda^{-M}exp - (\frac{\lambda o}{\lambda})^2$. Os parâmetros foram ajustados pelo método dos mínimos quadrados e a expressão resultante por ele obtida foi:

$$D(\lambda) = 101,883 \lambda^{-4,61} \exp[-(1,644/\lambda)^2]$$
 (111.1)

onde a constante de valor 101,883 ajusta a curva sobre os pontos experimentais.

Ao parámetro λ_0 foi dado um desvio igual a 0,02 Å obtido pela incerteza experimental nas medidas.

Pode-se associar à distribuição $D(\lambda)$, dada pela expressão (III-1), *e* distribuição Maxwelliana expressa em comprimentos de onda por:

$$\phi(\lambda) = A \lambda^{-5} \exp[-(1,644/\lambda)^2] \qquad (III-2)$$

A temperatura característica desta distribuição Maxwelliana é T = $(351 \pm 8)^{\circ}$ K, onde o desvio em T foi obtido atravás do desvio em λ_{n} .

A curva ajustada dada pela expressão (111-1), bem como os pontos experimentais são vistos na Figura 2. Por esta Figura vé-se que os pontos experimentais abaixo de $\lambda = 0,7$ Å caem fora da curva ajustada.

Transformando-se a distribuição $D(\lambda)$, dada em comprimentos de onda, para a distribuição correspondente em energia, através da relação:

$$\lambda = \frac{0,286}{\sqrt{E}}$$

onde λ é expresso em Å e E em ev, obtém-se:

$$D(E) = 4672,941 \ E^{0,805} \exp\{-\frac{E}{0.0303}\}$$
 (111-3)

1000m um desvio de 0,0007 \pm no parâmetro E $_{\rm c}$ \approx 0,0303 ev, obtido através do desvio dado para $\lambda_{\rm c}$.

Analogamente, a expressão (111-2) toma a foma:

$$\phi$$
 (E) = Cte. x E exp($\frac{E}{0.0303}$) (111-4)

O interesse em se obter estas distribuições em função da energia E, do néutron, vem do fato das secções de choque dos elementos, encontradas na literatura, virem expressas em função desta energia.

A expressão D(E) dada pela (III-3), bem como os pontos experimentais abaixo de 0,7 Å, (ou acima de 0,167 ev) transformados para energia em ev, são vistos na Figura 3. Por esta figura vê-se que é desprezível, no intervalo de energia correspondente a comprimentos de onda menores que 0,7 Å, o desvio dos pontos experimentais aos pontos dados pela curva ajustada quando esta é dada em função da energia do nêutron. Portanto, pode-se considerar dentro do erro experimental este ajuste como sendo correto para todos os pontos.

Como as curvas de secção de choque de fissão do 235 U e de ativação do 197 Au (material este escolhido para a obtenção de A_s^m como será visto no Capítulo III-2) têm comportamento simples seguindo de perto a lei i/v, e bem conhecido até aproximadamente a energia de 0,4 ev, era de interesse que as irradiações dos mesmos fossem feitas com nêutrons de energia abaixo desta. Como na prática não se dispunha de um fluxo de nêutrons com esta característica, o problema foi contornado pelo método da diferença de Cádmio. O Cádmio tem uma curva de secção de choque bem característica, como é visto na Figura 4. Esta secção de choque é bastante alta (~ 2500 barns) até a energia de $\sim 0,4$ ev, quando ela cai abruptamente. O Cádmio tem, portanto, a propriedade de absorver nêutrons de energia abaixo de aproximadamente 0,4 ev. Pela diferença entre o número de reações induzidas pelos nêutrons que atravessam uma folha de Cádmio, obtém-se o número de reações induzidas pelos nêutrons de energia abaixo de $\sim 0,4$ ev.

Considerando-se o Cádmio como um filtro de nêutrons pode-se determinar uma energia de corte efetiva E_{Cd} que estará localizada no entorno de 0,4 ev e aproximá-lo para um filtro perfeito com esta energia de corte. Esta energia E_{Cd} é obtida do modo como segue:

- Determina-se teoricamente a absorção de nêutrons pelo material colocado atrás de um filtro de Cádmio;
- Determina-se teoricamente a absorção de nêutrons pelo material colocado strás de um filtro ideal com energia de corte E_n.

com este procedimento, o valor de E_{Cd} será obtido pelo valor de E_o que dá a mesma absorção para os dois casos.

A energia E_{Cd} assim determinada será função da distribuição do fluxo de nêutrons, da espessura e secção de choque (coeficiente de absorção) do material e da espessura da folha de Cádmio.

Dayton e Pettus^(Da57), seguindo este procedimento, determinaram as energias E_{Cd} no caso de um fluxo Maxwelliano de nêutrons e materiais com secção de choque obedecendo e lei 1/v. Os resultados por eles obtidos são dados em função do coeficiente de absorção do material e da espessure da folha de Cádmio.

Como pode ser visto pelas expressões (III-3) e (III-4), o fluxo utilizado na realização das experiâncias apresentava uma distribuição bem próxima à Maxwelliana e es secções de choque dos materiais empregados, como é 10 to na Figure 5, seguiam de perto a lei 1/v. Sot estas considerações foram utilizados para a energia de corte E_{Cd}, os valores dados por Dayton e Pettus. Esta aproximação

Toi considerada satisfatória uma vez que a densidade do fluxo de néutrons na região de energia acima de E_{Cd} já caiu para menos de 0,1% da densidade máxima e as secções de choque de ativação do ouro e de fissão do ²³⁵U, tendo comportamento 1/v, são bem baixas, também nesta região. Assim sendo, a localização exata de E_{Cd} não é muito crítica sob o ponto de vista da precisão do que se deseja obter. Entretanto, embora a localização exata de E_{Cd} não seja muito importante, a utilização de filtros de Cádmio se faz necessária porque ambes as secções de choque do ¹⁹⁷Au e do ²³⁵U apresentam ressonâncias em energias maiores que 0,5 ev e embora o fluxo de nêutrons acima desta energia seja muito baixo, o número de mações po: ele induzida, neste caso, não será desprezível.

111.2 - ESCOLHA DO MATERIAL PARA A OBTENÇÃO DE A

111.2-e -- Considerações Gerais

É freqüente da reação de nêutrons com núcleos, resultar um isótopo radioativo. A atividade do radioisótopo producido pode levar ao conhecimento do fluxo de nêutrons que induziu esta atividade. Se esta fluxo de nêutrons ϕ , obedecer a uma distribuição conhecida, D(E) (sendo E a energia do nêutron) a atividade saturada A_a, induzida por núcleo no material será expressa por ^(Pr58):

$$A_{e} = \phi \int \sigma^{m} (E) D(E) dE \qquad (111.5)$$

once $\sigma^m(E)$ é a secção de choque de ativação do material.

A atividade saturada A_e é obtida pela expressão^(Pr58,8e64).

$$A_{s} = \frac{\lambda A}{(1 - e^{-\lambda t_{o}}) (1 - e^{-\lambda t_{o}})}$$
(11)-6)

onde:

- A é atividada absoluta (número de desintegrações ocorrendo por unidade de tempo) por núcleo radioativo, obtida no instante t_;
- λ é a constante de decaimento do radioisótopo formado;
- to é o tempo de exposição da amostra ao fluxo de néutrons (tempo de irradiação);
- t_e é o tempo que decorre entre o final de irradiação e o instante em que se obteve a atividade A,

Uma vez determinado A_s pode-se obter o valor de ϕ pela expressão (III-5). Os materiais adequados a esta tipo de medida, comumente chamados de detetores por ativação, pare levarem a um conhecimento praciso de ϕ devem satisfazer algumas condições, tais como:

- no caso de madida de fluxo de baixa intensidade, o material deve tar elta seção de choque de ativação para que se obtenha uma boa estatística de contagem na medida da atividade A,
- o esquema de desintegração do radionuciídeo formado deve ser bem conhecido e sciequedo sos métodos du medida de etividade absoluta existentes,
- o material dave vir destituído de impurezes de alta secção de choque de ativação,

 como detetor, o insterial deve ter una forma de fácil manuseio, de preferência deve poder tomar a forma de folhas finas para facilitar a medicia de atividade.

III.2-b - Escolhe do Ouro para a Medida da Atividade Saturada A^m Induzida por Nêutrons Térmicos

Neste trabalho escolheu-se o ouro para a medida da atividade saturada A^m_s induzida pelor néutrons térmicos de intensidade da ordem de 10⁶ néutrons/cm² x s, por ser o que melhor satisfaz a: condições dadas no Capítulo III.2-a,

O ouro pode ser facilmente obtido com alto grau de pureza \gtrsim é constituído de um único isótopo, o ¹⁹⁷Au, que por reação (n, γ) forma o ¹⁹⁸Au. O esquema de desintegração do ¹⁹⁸Au^{Le67} visto na Figura que segue é bem conhecido e um dos mais adequados ao método de medida de atividade por coincidência (β , γ), que é o método que dá a melhor precisão em medidas de atividade absoluta.

Esqueme de desintegração do ¹⁹⁸Au^(Le67)

A secção de choque de ativação do ¹⁹⁷Au tem comportamento simples e bem determinado na região térmica, seguindo bem de perto a lei 1/v como é visto na Figure 6. Nesta figura são vistos também alguns pontos experimentais de algumas das medidas desta secção de choque e o ajuste empírico utilizado, dado pela expressão ^(We60):

$$\sigma^{Au}(E) = \frac{1}{\sqrt{E}} \left(\frac{373,5}{0,0060 + (E - 4,90)^2} \right)$$
(111-7)

onde E é expresso em ev e o^{Au}(E) em barns.

Esta curva se ajusta sos pontos experimentais com um desvio menor que 0,25% até a energia de aproximedamente 0,2 ev. Acima desta energia, o ajusta se de via em menos de 1%.

III.2-c -- Medida da Atividade Induzida no Ouro

A atividade absoluta induzida no ouro foi medida pelo laboratório de Metrologia Nuclear do IEA, com o método de coincidência generalizada, num sistema de coincidência $4\pi(\beta,\gamma)$. O estudo detalhado do sistema e método de coincidência constam da tese de doutoramento de L.P. Moura^(Mo69).

Para a obtenção da atividade induzida A^m (vide expressão 1-8) foram utilizadas duas folhas de Au cujas características cão vistas na Tabela (II). A folha CN oi exposta diretamente ao fluxo de nêutrons do canal de irradiação 10 e a folha CM foi exposta envolta em folha de Cd de 0,5 mm de espessura. O arranjo experimental para estas irradiações é visto na Figura 6. Como as amostras não foram irradiadas no mesmo tempo, fez-se a monitoração do fluxo com folha de ouro. A energia de corte do Cd para a espessura de 0,5 mm conforme considerações do Capítulo III-1, é 0,34 ev. Na Tabela II são dadas as atividades induzidas em ambes as folhas bem como a atividade saturada induzida pelos nêutrons de energia abaixo de 0,34 ev, obtida através da diferença entre as duas primeiras.

111.3 - OBTENÇÃO DAS DENSIDADES pe E pi

III.3-a -- Obtenção de pe

A mica natural contém uma densidade de traços fósseis provenientes da fissão espontânea do ²³⁸U contido em baixa concentração na própria mica. Esta densidade de traços varia com a procedência da mica, de acordo com a sua idade geológica. Na presente experiência, foram utilizadas somente micas de baixo "background" fóssil e de mesma procedência.

Para a preparação das amostras foram construídas caixas de plástico ($\sim 2 \times 2 \times 0.2 \text{ cm}^3$) com uma das tampas removível. Uma quantidade de urânio natural em pó foi colocada dentro de duas destas caixas em contato direto com uma das faces daas folhas de mica. Como é visto na Figura 6. A espessura da camada de urânio obtida foi de aproximadamente 3 g/cm². Estas amostras, depois de seladas, permaneceram em repouso durante 4.216 anos.

Para a contagem de traços de fissão espontânea, as folhas de mica foram reveladas em HF de concentração 48,9% à temperatura de 25°C durante 3 horas.

Para delimitar-se as áreas de contagem de traços, foi colocado sobre cada folha de mica um reticulado de unidades de área iguais a 1,02 mm². O microscópio utilizado foi o microscópio óptico de tela de projeção (Reichert-NR 303574) do IEA, com aumento de 130 x. Sob este aumento, cada unidade de área do reticulado ficava totalmente contida na área útil de visão do microscópio.

Como a espessura μ , das amostras satisfazia a condição $\mu >> R_{max}$ era de se esperar que as densidades de traços independessem da uniform. Jade da camada de urânio e obedecessem à distribuição estatística de Poisson. Para testar esta hipótese foi levantado o histograma das contagens obtidas por unidade de área do reticulado. O número de unidades de área assim observadas foi de 229, totalizando ume contagem de 4877 traços. Este histograma é visto na Figura 7. Através dele foi feito o teste de aderêncic à distribuição de Poisson pelo método do X². Obteve-se um X² igual a 5,37 com 3 graus de liberdade, o que significa que no nível de confiança de 95% as contagens obtidas obedecem a uma distribuição de Poisson. Este distribuição vista na Figura 7 é expressa por:

$$P_n = 229[(m)^n/n!]e^{-m}$$

onde m é a média das contagens obtidas, iguel a 21,3 e n a freqüência das contagens.

Na Tallela III é dada a contagem total de traços para a obtenção de ρ e hem como a respectiva área de contagem. Nesta tabela é darla também a contagem de traços de "background" fóssil, $\rho_{\rm b}$. Da desvios foram obtidos pelo desvio padrão dado pela distribuição estatística de Poisson. Na Tabela IV são dadas as densidades de traços resultantes $\rho_{\rm a} \in \rho_{\rm b}$.

III.3-b - Obtenção de pi

Para a obtenção de pi (densidade de traços provenientes da fissão induzida no ^{2.3.5}U), foram colocadas novas folhas de mica nas amostras. Estas, em número de duas, foram expostas ao fluxo de nêutrons do canal de irrediações nº 10, uma coberta com Cd de 0,5 mm de espessura e a outra nua. O fluxo foi monitorado com folhas de ouro. O dispositivo de irradiação é visto na Figura 6. Foram feitos testes para a avaliação do tempo ideal de irradiação que não acarretasse superposição de traços e proporcionasse uma boa estatística para a contagem dos mesmos.

As contagens dos traços foram feitas nas mesma condições dadas no Capítulo III.3-a e foi considerada válida também para este caso a distribuição estatística de Poisson por onde se calculou o desvio padrão.

Os resultados das contagens de traços para a obtenção de ρ_i^{nua} (traços de fissão induzida por neutrons de todo o espectro) e ρ_i^{Cd} (traços de fissão induzida por neutrons de energia acima de E_{Cd}) encontram-se na Tabela III, bem como os respectivos tempos de irradiação. Na Tabela IV são dadas as densidades de traços resultantes: ρ_i^{nua} , ρ_i^{Cd} , e ρ_i (densidade de traços de fissão induzida por neutrons de energia abaixo de E_{Cd}).

A energia de corte do Cd, obtida no caso do ²³⁵ U foi a mesma que a obtida para o caso do ¹⁹⁷Au. Este resultado prende-se ao fato de E_{Cd} variar muito pouco com o coeficiente de absorção do material.

Na Figura 5 são vistos alguns pontos experimentais^(Hu60) dados para a secção de choque de fissão do ²³⁵U, bem como o ajuste empírico a estes pontos, dado pelas expressões^(FI66).

$$\sigma^{235}$$
 (E) = $\frac{1}{\sqrt{E}}$ (A + BE + C E²) E < 0,1 ev (111-8)

$$\sigma^{235}(E) = \frac{1}{\sqrt{E}} \left(\frac{\alpha}{(E - E_0)^2 + \frac{\pi^2}{4}} + \frac{\beta (E - E_0)}{(E - E_0)^2 + \frac{\pi^2}{4}} + \frac{\beta (E - E_$$

+ D + FE (GE⁴) 0,1 ev < E < 0,5 en	/ (111-9)
A = 99,28	ľ = 0,154	
B = 306,34	E _o = 0,285	
C = 1018,59	D = 91,41	
α = 0,256	F = 140,28	
β = 1,399	G = 102,41	

E em av, o (E) em barns.

. Através de desvio dos pontos experimentais às curvas ajustadas, availou-se um erro inferior a 0,5%.

CAPITULO IV

RESULTADOS OBTIDOS PARA A

IV.1-8 - RESULTADO OBTIDO PARA $\lambda_{\rm F}$ ATRAVÉS DA DISTRIBUIÇÃO REAL DO FLUXO DE NEUTRONS

Para a determinação de $\lambda_{\rm F}$ através da distribuição real do fluxo de nêutrons do canal de irradiação nº 10 foi utilizada a expressão (I-8). A distribuição deste fluxo, dada pela expressão (III-3) em unidades erbitrárias, foi normalizada para a unidade no intervalo de energia de 0 a 0,34 ev, através de integral:

$$K \int_{0}^{0,34 \text{ ev}} E^{0,806} \exp(-\frac{E}{0,0303}) dE = 1$$
 (IV-1)

Esta integral foi calculada numericamente(*) com a regra de Simpson com precisão de 0,1%. Obteve-se:

Embora esta normalização não fosse necessária na obtenção direta de λ_p ela é necessária para o cálculo do erro em λ_p .

As integrais que aparecem na expressão (I-8) foram também calculadas numericamente com a regra de Simpson com precisão de 0,1%, fazendo-se as seguintes substituições:

E_M por 0,34 ev,

D(E) por 592,098 E^{0,805} exp (- E 0,0303)

 $\sigma^{335}(E)$ pelas expressões (111-8) e (111-9) de acordo com os intervalos de energia válidos, e

σ^{Au}(E) pela expressão (III-7).

Os resultados obtidos foram:

$$\int_{0}^{0.34} D(E) \sigma^{233} (E) dE = 501,56 \text{ barns}$$
(IV-2)

$$\int_{0}^{0,34} D(E) \sigma^{Au}(E) dE = 87,35 \text{ barns} \qquad (1 \lor 1)$$

^(*) Computador IBM 1820 do IEA,

Substituindo-se na expressão (1-8) os valores das integrais dados pelas expressões (1V-2) e (1V-3), os valores de $\rho_{\rm e}$, $\rho_{\rm i}$, ${\rm C}^{2.3.5}/{\rm C}^{2.1.4}$ e τ dados pela Tabela IV e de A_s dado pela Tabela II, obteve-se para $\lambda_{\rm F}$:

O cálculo do erro cometido na determinação de λ_F segundo a expressão (1-8) foi calculado pela propagação dos erros em cada um dos fatores que entram na sua determinação, os quais serão analisados a seguir:

O erro $\Delta \sigma^{A u}(E)$ em $\sigma^{A u}(E)$ foi avaliado segundo considerações do Capítulo III.2-a por:

Analogamente o erro $\Delta \sigma^{2.3.5}$ (E) em $\sigma^{2.3.5}$ (E) foi avaliado segundo considerações do Capítulo III.3-h por.

$$\Delta \sigma^{235}$$
 (E) = 0,005 σ^{235} (E)

O erro proveniente da imprecisão na determinação de D(E) dada por

$$D(E) = 592,098 E^{0,805} exp(\frac{-E}{0.0303})$$

foi obtido pela incerteza experimental nos seus parâmetros, sendo que:

- ao parâmetro de valor 0,0303 ev foi dado o desvio de 0,0007 ev e,
- ao parâmetro de valor 0,805 foi obtido o desvio de 0,0005.

A incerteza na localização da energia de corte do Cádmio E_{Cd} foi considerada desprezível. Para tanto, verificou-se que todos os autores são unânimes em localizar a energia do corte E_{Cd} entre 0,3 e 0,5 ev, assim substituindo-se estes valores nas integrais que aparecem na expressão (1-8) obteve-se uma variação no quociente das mesmas menor que 0,5%.

Os erros cometidos em cada um dos outros fatores encontram-se nas Tabelas II e IV e são erros encontrados na própria literatura de onde foram retirados.

IV.1-b – Resultado Obtido para $\lambda_{\rm g}$ Através da Aproximação Maxwelliana para o Fluxo de Néutrons

Para a obtenção de $\lambda_{\rm p}$ pela aproximação Maxwelliana foi utilizada a expressão (I-3), substituíndo-se na mesma os valores de $\rho_{\rm e}$, $\rho_{\rm i}$ C²³⁵/C²³⁸, $\sigma_{\rm o}^{235}$, g²³⁵ (T) e τ dados pela Tabela IV e de $A_{\rm e}$ e g^{Au}(T) dados pela Tabela II. Obtave-se:

$$\lambda_F = (7,30 \pm 0,16) \ 10^{-1.7} \ anos^{-1}$$

O erro no valor desta medida foi calculado pela propagação dos erros cometidos em cada um des fatores que entram na sua determinação. Os erros em cada um destes fatores encontram-se nas Tabelas II e IV.

CAPITULO V

CONCLUSÃO

.

e,

Os valores obtidos para a constante de decaimento $\lambda_{\rm p}$, para a fissão espontánea do $^{2.3.8}$ U foram:

$\lambda_{\rm F} \approx (7,30 \pm 0,16) 15^{-1.7} \text{ anos}^{-1}$	na aproximação Maxwelliana para o fluxo de nêutrons.

 $\lambda_{\rm F} = \{7,46 \pm 0,17\}10^{-1.7}$ enos⁻¹ Para a distribuição real do fluxo de nilutrons.

O valor de $\lambda_{\rm p}$, obtido na aproximação Maxwelliana consta do trabelho "Determination of the Decay Constant for Spontaneous Físsion of ^{2.38}U", em fase de publicação na revista "Nuclear Instruments and Methods".

Pode-se notar que dentro do erro experimental estes dois valores coincidem.

Pela Tabela I vé-se que estes velores estão em bom acordo nom os encontrados por alguns pesquisadores como: Kuroda et al^(Ku56), Fleischer e Price^(FI64), Rab e Kuroda^(Ra66) e Roberto et al^(Ro68).

Tabela I

Valores encontrados para λ_{μ}

INVESTIGADORES	MÉTODO	ANO	λ _F *	
Perfilov ^(Pe 47)	câmara de fissão	1947	5.3 ±0.9	
Segre ^(Se 52)	câmara de fissão	1952	8.7 ± 0.3	
Kuroda et al ^(Ku-56)	radioquímico	1956	6.7 ± 0.6	
Parker a Kuroda ^(Pa 57)	radioquímico	1957	8.7 ± 0.5	
Gerling et al ^(Ge-59)	radioquímico	1959	11.9 ± 1.0	
Kuz'minov et al ^(Ku 60)	câmara de fissão	1960	10.7 ± 0.5	
Fleischer e Price ^(F164)	SSTR **	1964	6.6 ± 0.5	
	datação pelo ⁴⁰ K e ⁸⁷ Rb	1964	6.9	
Rao e Kuroda ^(R.a. 66)	radioquímico	1966	7.8 ± 0.9	
Roberts et al ^(Ro 68)	SSTR **	1966	7.03 ± 0.1 !	
Roberts et al ^(Ro 68)	SSTR **	1 966	7.03	

* Unidades de 10⁻¹⁷ anos⁻¹. ** Solid State Track Recorders.

Tabela II

Resultados das Atividades Induzidas no Ouro

$g(T) = 1,0085 \pm 0,0004^{(We \ 60)}$ $\sigma_0(Au = 96,8 \pm 0,3 \ Berne^{(Ge \ 66)} T_{1/2}^{Au^{19.6}} = 2,698 \pm 0,002 \ dise^{(Le \ 67)}$						
Código da Folha	Mnsea (gr)	Diâmetro (cm)	Espessura (mg/cm ³)	A ^{Cd} x 10 ^{1.4} dpm/étomo	A ^{nus} x 10 ¹⁴ dom/átomo	A _g x 10 ¹⁴ dpm/śtomo
CM Folhe com Cd	0,048735	0,8	96,9562	0,171 ± 0,001	-	1 4 4 4 4 0 000
CN Folha nue	0, 0480 70	0, 8	96,6322	-	1,317 ± 0,007	1,140 ± 0,007

Tabela III

	ρ e	ρ _i nue	ρ _i Cd	ρb
Tempo de irradiação	_	4 min.	25 min.	-
Traços Totais	4877	35979	11992	607
Área observada(cm²)	2,338	2,849	2,665	5,401

Resultados das contagens de traços

Tabela IV

Resultados para as Medidas des Densidades de Traços

$\tau = 4,216\pm0,001 \text{ enos } 9^{23.5}(T) = 0.984\pm0,002^{(WeBO)} \sigma_0^{-23.5} = 577,1\pm0,9^{(GoBB)} \text{berns } C^{23.5}/C^{238} = 0.726 \pm 10^{-2(LeB7)}$					
μe {tr/cm²}	p _i nus (tr./cm² x min.)	ρ _i Cd (tr./cm² x min)	Pi {æ./cm² x min}	ρb (tr./cm²)	
2080 ± 30	3157 ± 17	180 ± 2	297 7 ± 17	112 ± 11	

As demidade tabelas μe_{μ} , μ_{μ} nua e μ_{μ} Cd contém o background ρb_{μ}

As dunsidades açõus e p.Cd están normalizadas para 1 minuto de irradiação.

Figura 1 - Variação do diâmetro do traço com o tempo de revelação.

Figure 2 - Espectro real do cenal radiel 10^(Fu 70).

Figure 3 - Espectro real do canal radial 10 em função da energia E do néutron.

23

Garva obtide segundo referência: Hughes, D. J., Schwartz, R. B., BNL-325 2nd ed. "BernBook" (1958)

Figure 5 - Ajustes empíricos para as secções de choque de fissão do 235 U e de ativação do 497 Au, na ragião de nêutrons térmicos.

- * Pontos experimentais para σ²³⁵(E) tirados da referência: Hughes, D. J., Marguno, B. A., Brussel, M. K., BNL-325 2nd ed. "Barn Book" (1960).
 * Pontos experimentais para σ^{Au}(E) tirados da referência: Hughes, D. J., Sowartz, R. B., BNL-325 2nd ed. "Barn Book" (1958).

Figura 6 - Arrenjo experimental para as irradiações.

Figura 7 - Comparação do histograma levantando para o número de traços observado por unidade de área, com a distribuição de Poisson Pn, correspondendo so valor médio observado(m=21,3).

REFERÊNCIAS BIBLIOGRÁFICAS

- (Be64) K. H. BECKURTZ and K. WIRTZ "Neutron Physics" (ed. Springer Verlag, 1964);
- (Da57) D. I. E. DAYTON & W. G. PETTUS -- Nucleonics, 15, nº 12 (1957) 86;
- (FI63) R. L. FLEISCHER, et al, General Electric Research Laboratory Report nº 63 RL-3503 M;
- (FI64) R. L. FLEISCHER and P. B. PRICE, Phys. Rev. 133 (1964) B63;
- (FI65) R. L. FLEISCHER, P. B. PRICE and R. M. WALKER, Ann. Rev. Nucl. Sci. 15 (1965) 1;
- (FI66) R. G. FLUHARTY, N. H. MARSCHAL, O. D. SIMPSON, CONF-660303 Book 2 (1966) 985.
- (Fu70) R. FULFARO, Tese de Doutoramento (Departamento de Física, Universidade Estadual de Campinas, outubro de 1970);
- (Ge59) E. K. GERLING, Yu. A. SHUKWHYUKOV e B. A. MAKAROCHKIN, Radiokhimiya 1 (1959) 223;
- (Go66) M. D. GOLDBERG et al, BNL 325 (2nd ed). (Supp. nº 2) (1966)
- (Hu53) D. J. HUGHES, -- "Pile Neutron Research" -- Addison Wesley Publishing Co. (1953);
- (Hu60) D. J. HUGHES, R. B. SCHAWARTZ, BNL 325 (2nd ed.) (Suppl. nº 2) (1958)
- (Ku56) P. K. KURODA, R. R. EDWARDS & F. T. ASHIZAWA, J. Chem. Phys. 25 (1956) 603;
- (Ku60) B. D. KUZ'MINOV et al, Soviet Phys. JETP 10 (1960) 290;
- (Le67) C. M. LEDERER, J. M. HOLLANDER e J. PERLMAN Table of isotopes -6th edition - John Wiley and Sons, Inc. - 1967.
- (Mo69) L. P. Moura, Tese de Doutoramento (Departamento de Física, Universidade Estadual de Campinas, dezembro de 1969):
- (Nu65) Nuclear Data Sheets, National Research Council, National Academy of Sciences, USA (1959 a 1965);
- (Pa57) P. L. PARKER e P.K. KURODA, J. Inorg. Nucl. Chem. 5 (1957) 153;
- (Pe47) N. A. PERFILOV, Zh. Eksperim, i Teor. Fiz. 17 (1947) 748;
- (Pr58) W. J. PRICE, "Nucl. Radiation Detection" McGraw-Hil Book Company, Inc. (1958);
- (Pr62) P. B. PRICE e R. M. WALKER, J. Appl. Phys. 33 (1962) 3407;
- (Pr62) P. B. PRICE e R. M. WALKER, Phys. Letters 3 (1962) 113;
- (Ra66) M. N. RAO e P. K. KURODA, Phys. Rev. 147 (1966) 884;
- (Ro68) J. H. ROBERTS, R. GOLD & R. J. ARMANI, Phys. Rev. 174 (1968) 1482;
- (Se52) E. SEGRE, Phys. Rev. 86 (1952) 21;

(Si59) E. C. H. SILK, e R. S. BARNES, Phil Mag. 4 (1959) 970;

(We60) C. H. WESTCOTT - AECL 1101 e adendum (1960).

