BR7801679

,

UTILIZAÇÃO DE UM REATOR TIPO HTR COMO FONTE DE CALOR PARA PROCESSAMENTO DO XISTO PIROBETUMINOSO PELO MÉTODO PETROSIX

Roberto T. Pessine

DISSERTAÇÃO E TESE · IEA 031

OUTUBR0/1977

-, / .

UTILIZAÇÃO DE UM REATOR TIPO HTR COMO FONTE DE CALOR PARA PROCESSAMENTO DO XISTO PIROBETUMINOSO PELO MÉTODO PETROSIX

Roberto T. Pessine

Dissertação para obtenção do Título de "Mestre em Ciências e Tecnologia Nucleares" — Orientador Prof. Dr. Yoshiyuti Hukai. Apresentada e defendida em O" de agosto de 1977, à Escola Politácnica da Universidade de São Paulo

APROVADA PARA PUBLICAÇÃO EM JUNHO/1977

CONSELHO DELIBERATIVO

MEMBROS

Klaus Reinach — Presidente Roberto D'Utra Vaz Helcio Modesto da Costa Ivano Humbert Marchesi Admar Cervellini

PARTICIPANTES

Regina Elitatiete Azevedo Beretta Flávio Gon

SUPERINTEND A

Rôm / Al airo Pieroni

INSTITUTO DE ENERGIA ATÓMICA Ceixa Postal 11,049 (Pinheiros) Cidade Universitária "Armando os Salles Oliveira" SÃO PAULO -- BRASIL

.

NOTA. Este trabalho foi conferido pelo autor depois de composto e sua redação está conforme o original sem qualquer correção ou mudança.

INDICE

Página

1. INTRODUÇÃO	1
1.1 – A Substituição da Energia Fóssil pela Nuclear	2
1.2 – Objetivos deste Trabalho	2
1.3 – Justificativa deste Estudo	3
2. DESENVOLVIMENTO DA APLICAÇÃO DOS REATORES NUCLEARES NA INDÚSTRIA.	3
2.1 - Introdução	3
2.2 – Aplicação de Reatores Nucleares em Processos Industriais de Baixa Temperatura	5
2.3 - Reatores Nucleares de Alta Temperatura como Fornecedores de Calor	5
2.3.1 — Métodos Básicos para Reforma do Carvão	7
2.3.2 — Produção de Hidrogênio	10
2 4 - Principais Projetos Internacionais em Andamento	11
2.5 Aplicação de Reatores HTR no Brasil	17
3. O REATOR PR-3000 COMO FONTE DE CALOR E DE ENERGIA ELÉTRICA	17
3.1 – Introducão	17
3.2 - Caracter (sticas Principais do PR-3000	18
3.3 – Componentes Principais	18
3.3.1 - Elemento Combustível	18
3.3.2 - Ciclo de Combustível tipo OTTO	18
3.3.3 – Vaso do Reator	21
3.3.4 – Cerne do Restor	23
3.3.5 — Circuladores de Hálio	24
3.3.6 - Sistema de Carregamento do Reator	26
3.3.7 – Trocadores de Calor e Geradores de Vapor	27
3.3.8 – Prédio de Contenção do Reator	27
3.3.9 – Sistema de Purificação de Hélio	27
4. TECNOLOGIA ENVOLVIDA NA UTILIZAÇÃO DO XISTO	28
4.1 - Introducão	28
4.2 - Reserves de Xisto	28
A 2 1 - Arnesto Mundial	
422 - Reserves do Brasil	· 40 20
	47
a.J – A Indústria do Xisto	29
4.3.1 – Introdução	29

4.3.2 – A Indústria do Xisto no Mundo	32
4.4 – Processos de Retortagem do Xisto Betuminoso	33
4.4.1 - Introducão	33
4.4.2 – Método de Retortagem Local ("in situ")	34
4.4.3 - Método de Retortagem Superficial	34
4.5 – O Processo Petrosix	35
4.5.1 – Introdução	35
4.5.2 — A Usina Piloto Semi-Industrial de Irati (U.P.I.)	35
4.5.3 – Descrição do Processo	37
4.5.4 – Usina de Xisto Comercial	38
5. OTIMIZAÇÃO TERMODINÂMICA DO COMPLEXO INDUSTRIAL REATOR NUCLEAR	
PR-3000 - USINA DE XISTO COMERCIAL	40
5.1 – Considerações Gerais	40
5.2 – Tipos de Fluxogramas: Possibilidades e Problemas Envolvidos	41
5.3 — Fluxograma Considerado para os Cálculos de Otimização Térmica	41
5.3.1 – Aspectos Gerais sobre os Três Ciclos Básicos	41
5.3.1.1 Circuito Primário do Reator PR-3000	41
5.3.1.2 - Circuito do Gás de Processo (Usina de Xisto Acoplada - U.X.A.)	41
5.4 Equacionamento do Problema	43
5.4.1 – Introdução, Especificação do Problema	43
5.4.2 - Dados Disponíveis	45
5.4.3 – Balanço Térmico do Complexo PR-3000 – U.X.A.	46
5.4.3.1 – Usina de Xisto Acoplada. Ciclo do Gás de Processo	46
5.4.3.2 – Relações Decorrentes do Circuito Primário do Reator	47
5.4.4 – Ciclo de Vapor	48
5.4.4.1 – Considerações Gerais	48
5.4.4.2 - Nomenciatura	48
Contorno	49
5.4.4.3.1 – Aquecedor Regenerativo	49
5.4.4.3.2 - Reaguecimento	49
5.4.4.3.3. – Outras Condições de Contorno	50
5.4.4.4 - Discussão Geral Sobre Alguns Pontos do Ciclo de Vapor	51
5.4.4.5 – Relações Decorrentes do Ciclo de Vapor	56
5.5 – Procedimento Numérico	56
5.5.1 - Método de Cálculo	56
• 5.5.2 – O Programa Digital	57
5.5.3 – Diagrama Indicando a Seqüência de Cálculos	58
6. RESULTADOS, CONCLUSÕES E COMENTÁRIOS FINAIS	61
6.1 - Introducão	61
R 2 - Escolha da Pressão de Extração do Vapor para o Aquecedor (Ponto 4)	61

6.3 – Obtenção dos Pontos de Convergência	61
6.4 — Resultados Finais	70
6.5 – Conclusões e Comentários	72
6.5.1 – Conclusões Finais	72
6.5.2 - Recomendações	72
6.5.3 – Comentários Finais	72
APÉNDICE 1: FATORES DE CONVERSÃO DE UNIDADES APÉNDICE 2: FINALIDADES DAS SUBROTINAS	74 75
APÉNDICE 3: LISTAGEM DO PROGRAMA DIGITAL PARA A OTIMIZAÇÃO TÉRMICA DO COMPLEXO NUCLEAR INDUSTRIAL PR-3000 - U.X.A	76
REFERÊNCIAS BIBLIOGRÁFICAS	83

.

é

•

UTILIZAÇÃO DE UM REATOR TIPO HTR COMO FONTE DE CALOR PARA PROCESSAMENTO DO XISTO PIROBETUMINOSO PELO MÉTODO PETROSIX

Roberto T. Pessine

RESUMO

Neste trabalho são estudados alguns aspectos termodinâmicos do sistema resultante do acoplamento entre uma central nuclear tipo THTR (Thorium High Temperature Reactor) e uma usina comercial de processamento de xisto

O acoplamento é caracterizado pelo emprego de toda energia disponível pelo reator nuclear no processamento do xisto. O reator nuclear empregado neste estudu é o PR-3000, de 2980,8 MW_t, cujo projeto foi desenvolvido na República Federal da Alemanha para aplicações na reforma do carvão e do vapor produzindo redutores e produtos similares aos derivados de petróleo. A usina comercial de xisto (U.C.X.) considerada emprega o processo Petrosix, desenvolvido pela Superintendência da Industrialização do Xisto (SIX) que constitui uma das unidades da Empresa Petrobrás.

São propostos vários fluxogramas para o acoplamento entre os ciclos básicos do reator nuclear PR-3000 com o ciclo de gás aquecido da U.C.X. A partir de um desses fluxogramas, previamente escolhido, determina-se, sob certas condições de contorno, os parâmetros termodinâmicos que proporcionam um rendimento térmico máximo do sistema.

A usina comercial do xisto é redimensionada para consumir toda energia fornecida pelo reator nuclear PR-3000, produzindo um total de 95.500 harris/dia. Do acoplamento resulta uma economia de óleo, em comparação com o método convencional de auto-alimentação empregado na U.C.X., de 5,3 milhões de barris/dia.

São determinados também os parámetros principais do ciclo de vapor do reator PR-3000, e dos trocadores de calor, cujos dados são semelhantes aos correspondentes dos reformadores, quando da aplicação do reator PR-3000 na reforma do vapor e carvão.

1. INTRODUÇÃO

A disponibilidade de petróleo a preços baixos levou muitas nações ao consumo supérfluo e indiscriminado, com a consequente exaustão dos recursos próprios e abuso das reservas externas.

Do petrólec obtêm-se derivados que se destinam a duas finalidades principais:

- Fornecimento de energia: é o destino menos nobre dado a certa ciasse de refinados que são usados como combustível (óleo, gasolina, querosene) em motores a explosão de baixíssimo rendimento, em caldeiras industriais e de eletricidade, etc.
- Fornecimento de materiais indispensáveis à vida moderna, tais como plásticos, vestimentas, remédios, etc.

A facilidade de se trabalhar com o petróleo, fluido em temperaturas ordinárias, tornou-o responsável, hoje, por mais de 50% da energia consumida no mundo. E, como consequencia, o desenvolvimento econômico das nações depende acentuadamente do petróleo, embora as previsões

mais otimistas sobre a duração das jazidas petrolíferas conhecidas (da ordem de 600 bilhões de barris) não alcancem 50 anos.

Ainda na linha dos materiais fósseis, cujos recursos são limitados e não renováveis, pode-se destacar:

- a) Gás natural: tem finalidades iguais aos refinados de petróleo; duração das reservas não mais de 35 anos⁽¹³⁾;
- b) Carvão: a grande maioria das reservas mundiais é constituida por linh-to, não podendo, salvo condições locais excepcionais, ser queimado diretamente para a produção de calor por cuasa do seu alto teor de enxofre que polue o meio ambiente. Mas, já na 2ª, década deste século foram patenteados vários métodos que tratam da transformação do carvão em produtos líquidos e gasosos, semelhantes aos refinados de petróleo. Entretanto, apos o término da 2ª Guerra Mundial, a abundância de petróleo provocou uma estagnação no aperfeiçoamento desses métodos. Atualmente, todos os grandes centros de pesquisa de energia concentram esforços no desenvolvimento de métodos de beneficiamento do carvão;
- c) Rochas oleíferas: um outro substituto do petróleo é constituído pelas rochas oleíferas, impropriamente chamadas de xistos. Embora se tenha iniciado a extração comercial dos hidrocarbonetos destas rochas, mesmo antes do petróleo, o seu desenvolvimento foi duramente atingido quando o petróleo passou a ser comercializado em abundância já no século passado (por volta de 1860) Desde então, os processos de tratamento dos xistos não experimentaram, salvo algumas exceções, progresso significativo. As reservas mundiais de rochas oleíferas têm um conteúdo de óleo pelo menos 3 a 4 vêzes superior (Capítulo 4) às reservas conhecidas de petróleo. Hoje, muitos países mantém instituições de pesquisa destinadas a desenvolver processos de tratamento do xisto.

No campo da energia, dentre as fontes alternativas (não fósseis) em estudo (energia solar, ventos, marés, energia nuclear de fissão e fusão etc.), somente a energia nuclear de fissão atingiu um grau de desenvolvimento e eficiência econômica compatíveis com as condições e necessidades impostas pela demanda de energia. Embora os reatores nucleares comercializados nesta década sejam apenas fornecedores de energia elétrica, operando em temperaturas de vapor relativamente baixas (~330°C), grandes estorços estão sendo feitos^(22,23,27) visando-se o emprego do calor diretamente em processos industriais para substituir a queima de combustível de origem fóssil.

1.1 - A Substituição da Energia Fóssil pela Nuclear

Com respeito a energia nuclear, enormes esforços estão sendo feitos pelas maiores potências industriais do mundo (EUA, Alemanha, Japão, etc.) para a construção de reatores nucleares (Capítulo 2) que forneçam calor em temperatura elevada (1000°C), de modo a poder atender às exigências impostas principalmente pelos processos usados na siderurgia, bem como na reforma do caivão e produção de hidrogênio. Em todos esses processos é requerido calor e temperaturas da ordem de 1000°C. Espera-se que esses reatores nucleares de alta temperatura, chariados de 2ª Geração, possam entrar em funcionamento ainda na próxima década.

Embora seja vasta a literatura referente a trabalhos sobre aplicação do calor nuclear de alta temperatura em processos industriais, principalmente na siderurgia, produção de redutores e óleo do carvão e na produção de hidropénio a partir da água, não existe nenhum trabalho significativo sobre aplicação em processamento de xistos que requerem calur carvar em temperaturas da ordem de 700-800°C.

1.2 - Objetivos deste Trabalho

Este trabalho tem por objetivo apresentar um estudo preliminar sobre alguns aspectos termodinâmicos para o acoplamento de um reator nuclear de alta temperatura, especificamente o reator

PR-3000 projetado na República Federal da Alemanha, a uma usina de xisto que utiliza o processo Petrosix, desenvolvido pela Petrobrás S/A.

- São abordados pormenorizadamente os seguintes aspectos:
 - 1) Dimensionamento de uma usina de xisto comercial para ser acoplada ao reator nuclear PR-3000.
 - 2) Otimização térmica do acoplamento PR-3000 de Xisto Comercial.
 - 3) Obtenção de condições termodinâmicas de operação para o reator, referentes aos trocadores de calor e geradores de vapor

1.3 - Justificativa deste Estudo

O estudo da aplicação do calor nuclear de alta temperatura para o processamento do xisto pelo método Petrosix justifica-se face às seguintes premissas:

- O Brasil possui a 2^a maior reserva de xisto do mundo, com um total de 120 bilhões de toneladas métricas⁽⁵⁷⁾
- 2) A disponibilidade do processo Petrosix, a ser usado no tratamento do xisto pertencente à Formação Irati, o maior depósito do País. Note-se que este processo foi totalmente desenvolvido no Brasil e, portanto, foi adaptado as nossas condições tecnológicas. Ele já está comprovado, técnica e economicamente, através de uma instalação semi-industrial – UPI, construída em São Mateus do Sul, Estado do Paraná.
- 3) O processo Petrosix requer calor em temperaturas da ordem de 700°C. Para isto são queimados cerca de 30% do óleo produzido por uma usina comercial de xisto. A utilização do calor nuclear para alimentar a usina implicaria num aumento considerável da produção de óleo que seria utilizado em finalidades mais nobres do que a queima na própria usina.
- 4) As parcas reservas de petróleo do País, que importa mais de 80% de suas necessidades, justificaria a procura de outras fontes de combustível fóssil disponíveis no próprio território nacional.
- 5) A entrada do Brasil na era nuclear, através do acordo nuclear com a República Federal da Alemanha, reforça as possibilidades da utilização da energia nuclear em outras aplicações além da produção de eletricidade.
- 6) O desenvolvimento de reatores de alta temperatura, e.g., o PR-3000 na República Federal da Alemanha, para aplicação industrial na reforma do carvão, possibilita explorar outros tipos de aplicações similares, próprias do Brasil, como no processamento do xisto.

2 - DESENVOLVIMENTO DA APLICAÇÃO DOS REATORES NA INDÚSTRIA

2.1 - Introdução

Desde a 1ª reação nuclear auto-sustentável, demonstrada há cerca de 35 anos atrás, até os dias atuais, a tecnologia nesse campo evoluiu com tal rapidez que a energia nuclear representa hoje cerca de 10% da capacidade de geração de energia elétrica nos E.U.A. Está previsto que, por volta de 1985, 50% da energia elétrica nos E.U.A. provenha de reatores nucleares⁽³⁰⁾.

O Brasil terá até 1990 cerca de 9 usinas nucleares instaladas, produzindo um total de 10.200 MWe.⁽²⁾, (Figura 2.1).

Figura 2.1 - Programa Nuclear Brasileiro

O papei dos reatores nucleares na indústria de eletricidade esta bem estabelecido, mas, existem várias outras áreas onde a energia nuclear, como uma fonte opcional, pode realizar importantes contribuições. A maioria destas áreas estão localizadas na indústria que representa aproximadamente 20% do mercado de energia petrolífera no Brasil⁽¹³⁾ e 25% do mercado energético nos E.U.A.⁽³⁰⁾ (Figura 2.2).

Figura 2.2 - Usos do Petróleo no Brasil.

4

Todos os reatores nucleares comercializados atualmente, podem fornecer vapor em temperaturas no intervalo de 320° C - 350° C.

Entretanto, a temperatura do vapor limita o número de processos industriais nos quais o calor pode ser transferido. (Figura 2.4). Mas, prevendo-se a instalação de um grande número de reatores nucleares nas próximas décadas, os estudos sobre a localização dessas usinas devem incluir a possibilidade de fornecimento, pelo reator nuclear, não só de eletricidade, mas também de vapor diretamente para indústrias previamente construídas próximas aos reatores. Desta forma, a eficiência global do processo será grandemente aumentada, ao mesmo tempo em que se diminui a transferência de calor residual para o ambiente (Figura 2.3).

Figura 2.3 – Utilização da Energia na Indústria.

2.2 - Aplicação de Reatores Nucleares em Processos Industriais de Baixa Temperatura

Nos E.U.A., onde o calor para processos de baixa temperatura na forma de vapor industrial representa cerca de 17% da energia total consumida pela nação⁽⁴⁶⁾, tem sido grande o interesse pelo aproveitamento do vapor fornecido pelos reatores nucleares de primeira geração.

Na República Federal da Alemanha estuda-se a implantação de grandes redes de vapor alimentados por L.W.R. (Light Water Reactor) para aquecimento doméstico. Nos E.U.A. existem estudos para utilização do calor residual dos L.W.R. no tratamento de esgotos e produção de fertilizantes.

Vários projetos foram desenvolvidos para aplicação de calor nuclear de baixa temperatura na dessalinização da água do mar; em Israel e na U.R.S.S. existem em funcionamento, com pleno sucesso, usinas nucleares com essa precípua finalidade.

Planeja-se, atualmente, a construção de unidades navais, principalmente petroleiros e graneleiros de propulsão nuclear; sub rinos de propulsão nuclear são utilizados há duas décadas.

2.3 - Reatores Nucleares de Alta Temperatura como Fornecedores de Calor

Conforme mostra a Figura 2.4, existe um grande número de processos industriais que requerem calor no intervalo de temperatura de 500°C a 1000°C.

Nessa faixa de temperatura estão localizadas as necessidudes das indústrias de base de qualquer país moderno, principalmente a siderurgia e as refinarias de petróleo. Encaixam-se também, nesse

intervalo, os processos para produção de substitutos de derivados de petróleo e gases redutores para a siderurgia (processos de gaseificação do carvão, pirólise do xisto) e, especificamente, a produção de hidrogênio a ser usado não somente como redutor na siderurgia, mas como combustível, no futuro.

Dos processos ilustrados na Figura 2.4, a reforma do carvão e a produção de hidrogênio são os de maior interesse para serem acoplados a usinas nucleares. Por este motivo, eles são tratados com maiores du alhes nos ítens seguintes.

Figura 2.4 - Temperaturas de operação dos diversos processos industriais.

6

2.3.1 - Métodos Básicos para Reixima do Carvão

Os princípios tecnológicos para conversão de carvão em óleo e gás, já estão firmemente estabelecidos, como pode ser demonstrado pela operação de uma série de usinas piloto e de demonstração, onde a conversão do carvão é feita em pequena escala. O problema é, então, mobilizar recursos financeiros e industriais necessários para por a tecnologia existente em bases comerciais^(37,38,39,59)

Considerando-se a diferença entre o número se atomos de hidrogênio e o número de átomos de carbono no carvão, óleo e gás, nota-se uma maior predominância de hidrogênio nestes dois últimos. (Tabela II.1)

Tabela II.'1

	Composto	Nº de Átomos H/Nº Átomos C
Solido	carvão	0 8/1
Líquido:	óleo	1 75/1
	metano	4.0/1
	etano	3.0/1
Gases	propano	2.66/1
	butano	2 5/1
ļ		

Comparação entre o Numero de Átomos de Carbono e Hidrogênio nos Compostos

O hidrogênio pode ser obtido em grande escala através da quebra da molécula de água. A energia para a consumação desse processo pode vir da queima do próprio carvão, ou de outra fonte como a energia nuclear Em qualquer dos casos, a pequena eficiência da produção de hidrogênio é o fator limitante da economia do processo. Em todos os processos de reforma do carvão, existe uma etapa de gaseificação, onde o carvão reage com o vapor d'água, produzindo gás de síntese (CO + H₂) ou então, dependendo do processo, um excesso de vapor d'água pode produzir mais hidrogênio. As reações são:

Hidrogeseificação: $C_{(g)} + H_2 O_{(g)} \rightarrow CO_{(g)} + H_{2(g)} \Delta H = 28,4 \text{ Kcal/mol}$

Reação de deslocamento: $H_2O_{(g)} + CO_{(g)} \rightarrow H_{2(g)} + CO_{2(g)} \Delta H = -9,9 \text{ Kcal/mol}$

(Δ H considerado a 25°C, P = 1 atm; C_(a) = grafita).

Entretanto, todo processo de conversão produz uma mistura de hidrocarbonetos gasosos (metario, etano, propano), os quais são substitutos sintéticos do gás natural.

Síntese do metano:

$$CO_{(g)} + 3H_{2(g)} \rightarrow CH_{4(g)} + H_{2}O_{(g)} \Delta H = -49,0 \text{ Kcal/mol}$$

Os métodos de conversão do carvão em óleo e gás podem ser divididos basicamente em quatro:

(1) Carbonização ou pirólise: É o mais simples dos processos e que consiste no aquecimento do carvão em ausência de ar, causando a decomposição do carvão em alcatrão e gás, deixando um resíduo de coque juntamente com impurezas. Conforme pode ser visto na Figura 2.5 o alcatrão e o gás são tratados com gás de síntese e separados, produzindo se então, hidrocarbonetos líquidos e gasosos. O gás de sintese é obtido pela reação do coque sólido proveniente do vaso de pirólise com o vapor d'água.

Figura 2.5 - Diagrama do processo de carbonização.

(2) Hidrogenação do carvão em alta pressão (Processo Bergius):

Neste processo (Figura 2.6), o carvão é moído junto com o catalizador (tal como Co, Mo), misturado com óleo, formando uma pasta, de modo que pode ser transportado através de bombas de circulação e, desta forma, é introduzido no reator químico onde reage com hidrogênio em alta pressão. Depois da hidrogenação, o líquido produzido é destilado para remover os sólidos, os quais são gaseificados para produzir hidrogênio necessário à operação. No Processo Bergius, como em outros, o vapor d'água é a fonte de hidrogênio, o qual, por sua vez, deve ser adicionado ao carvão para finalmente convertê-lo em óleo e gás.

(3) Processo de extração (Figura 2.7): Consiste na dissolução do carvão num solvente orgânico, sendo que a mistura é feita em baixa pressão. Este processo --- doação do hidrogênio (hydrogen-donor)-corresponde a um dos dois processos de extração existentes. O líquido resultante da extração é hidrogenado, produzindo óleo cru sintético e solvente para extração. Desde que o solvente é rico em hidrogênio, ele o transfere para o carvão durante o processo de extração; parte do carvão permanece não dissolvido. Esse carvão é gaseificado, como em outros processos para produzir hidrogênio.

Figura 2.6 – Diagrama do processo Bergius (Hidrogenação direta)

Figura 2.7 - Diagrama do processo de extração.

(4) Hidrogenação do monóxido de carbono (Processo Fischer-Tropsch) (Figura 2.8): O gaseificador é alimentado com carvão, o qual é aquecido na presença de oxigênio e vapor. A combustão produz um gás que consiste principalmente de monóxido de carbono e hidrogênio. O gás, depois de atravessar os estágios de purificação e deslocamento, passa sobre um catalizador, produzindo uma variedade de hidrocarbonetos líquidos e gasosos.

Figura 2.8 - Diagrama do processo Fischer-Tropsch.

2.3.2 - Produção de Hidrogênio

O hidrogênio está sendo estudado atualmente como uma das alternativas futuras para ajudar a resolver o complexo problema energético mundial.

O hidrogênio, um gás altamente energético, é potencialmente o mais limpo de todos os combustíveis, pois, queimando-se por reação com oxigênio produz vapor d'água. As principais aplicações do H_2 são:

- a) como combustível para diversos fins;
- b) como um meio de reserva e transmissão de energia;
- c) como um redutor para a indústria siderúrgica;
- d) como um dos elementos de partida para a produção de amônia;
- e) como gás de processo para a indústria de gaseificação do carvão e pirólise do xisto (pelo processo Petrosix);
- f) em várias outras aplicações na indústria guímica.

O hidrogênio é encontrado livre na natureza em quantidades muito pequenas. Ocorre no ar (1 p.p.m., aumentando a proporção nas camadas mais externas), parcialmente em certas emanações vulcânicas $(0,1-.20\%)^{(47)}$; apresenta-se em diversas formas de combinação, por exemplo, na água,

ácidos, bases, e em quase todas as combinações orgânicas (petróleo, carvão, xisto, gasolina, etc.). O gás hidrogênio pode ser obtido em grandes quantidades pela decomposição de H_2O , que é composta de 11,19% de H_2 e 88,81% de O_2 .

O método convencional mais elementar para decompor a água em seus elementos constituintes é a eletrólise. Mas, embora este método seja usado desde o início do século, não é o melhor em termos econômicos.

Atualmente, as pesquisas se concentram na produção de hidrogênio através da quebra termoquímica da água^(45,33,34). Este método se baseia numa série de reações químicas, que, quando combinadas, apresentam como resultado líquido a decomposição da água em hidrogênio e oxigênio.

O intervalo de temperatura em que tais reações ocorrem é de 100°C a 1000°C.

Como exemplo, considera-se o ciclo mostrado na seqüência de reações abaixo⁽²⁰⁾.

1)
$$Cr_2O_{3(s)} + 4Ba(OH)_{2(t)} \xrightarrow{650^{\circ}C} 2Ba_2CrO_{4(s)} + 3H_2O_{(g)} + H_{2(g)}$$

2) $2BaCrO_{4(s)} + Ba(OH)_{2(t)} \xrightarrow{850^{\circ}C} Ba_3(CrO_{4})_{2(s)} + H_2O_{(g)} + \frac{1}{2}O_{2(g)}$
3) $2Ba_2CrO_{4(s)} + Ba_3(CrO_{4})_{2(s)} + 5H_2O_{(t)} \xrightarrow{100^{\circ}C} Cr_2O_{3(s)} + 2BaCrO_{4(s)} + 5Ba(OH)_{2(c)}$
5 $Soma: H_2O \longrightarrow H_2 + \frac{1}{2}O_2$
5 $= solido: I = I(guido: g = gasoso: d = dissolvido.$

Na 1ª reação ocorre a oxidação do cromo, que passa de valência + 3 para + 4 pela reação com hidróxido de bário em 650°C; na 2ª reação o cromo + 4 é oxidado a + 5 pelo hidróxido de bário em 850°C; e, em 100°C ocorre a hidrólise dos cromatos de bário + 4 e + 5. Somando-se as reações, membro a membro, obtem-se a reação decomposição da água.

2.4 - Principais Projetos Internacionais em Andamento

O interesse maior da aplicação dos HTR (High Temperature Reactor) repousa, aparentemente, na indústria do ferro e aço. Na realidade, esforços maiores, paralelos ao experimentado pela siderurgia neste setor, estão concentrados na conversão do carvão e obtenção do hidrogênio. Isto é explicado porque, da reforma do carvão, além de se obter redutores para siderurgia, são obtidos produtos combustíveis e matéria prima a ser utilizada na indústria petroquímica; o hidrogênio, além de excelente combustível não poluente, tem diversos outros usos de suma importância.

O carvão é relativamente abundante nos EUA, Alemanha, Inglaterra e a água – matéria prima para obtenção de hidrogênio – constitui uma fonte inesgotável para os países banhados pelo mar.

Os países mais ativos nos estudos de aplicação do HTR em processos que utilizam calor em elevada temperatura, são a República Federal da Alemanha, EUA, Japão e França. Os programas em desenvolvimento nestes países são considerados a seguir:

1) FRANÇA – Desde 1971, vários artigos forani publicados pelos franceses, sobre a aplicação do calor na indústria química e do aço^(44,49). Recentemente, J. Astier apresentou um trabalno⁽¹⁾ sobre as perspectivas e ofertas da energia nuclear na siderurgia, onde são analisados os aspectos técnicos e econômicos da utilização de um reator tipo HTGR (High Temperature Gas Cooled Reactor) na produção de aço e redutores, comparando-se os resultados com os métodos convencionais. Embora a França tenha muito interesse nos reatores de alta temperatura, não consta no programa nuclear francês a construção de nenhum protótipo desses reatores utilizando-se de tecnologia própria

2) JAPÃO – O governo japonês tem considerado, como tópico prioritário em seu programa de planejamento, o desenvolvimento de reatores de alta temperatura para serem utilizados na indústria química e do aço.^(19,25,26). Desde 1969, a JAEREI (Japan Atomic Energy Research Institute) tem feito estudos sobre o projeto, bem como pesquisa e desenvolvimento, de um reator experimental (VHTR: Very High Temperature Reactor) de 50 MW térmico, refrigerado por hélio, com temperatura de saída do refrigerante de 1000°C.

A construção deste reator está programada para 1980. Paralelamente ao programa de construção deste reator, foi iniciado o desenvolvimento de um plano para a utilização do calor nuclear na indústria do aço, através dos processos de redução direta do minério de ferro. Fazem parte deste plano⁽⁵¹⁾ os seguintes tópicos: a) produção de hidrogênio – a ser usado como redutor e combustível; b) gaseificação do carvão – a fim de se obter redutores, combustíveis e outros derivados substitutivos do petróleo; c) controle de poluição – reduzir ao mínimo a utilização direta do carvão como fonte de energia, e de óleo com alto teor de enxofre, por causa da situação crítica em que se encontra o Japão com respeito a densidade demográfica e inexistência de áreas desabitadas.

Além dos aspectos de engenharia do reator VHTR, o JAERI deu prioridade à pesquisa de materiais estruturais, tipos de combustíveis, fabricação de circuitos térmicos de hélio para testes em condições reais de temperatura e pressão do refrigerante do reator ($T = 1000^{\circ}$ C, P = 40 atm), trocadores de calor para temperaturas elevadas e estudos sobre a otimização total do sistema.

As pesquisas sobre a redução direta do minério de ferro para produção de aço estão financiadas pelo MITI (Minístry of International Trade and Industry). A primeira fase do projeto visa acoplar o sistema de redução direta ao reator VHTR⁽²⁵⁾ no início da próxima década.

3) EUA – Os EUA, antes na liderança da construção de reatores de alta temperatura (HTGR), foram duramente atingidos pela chamada crise do petróleo em 1973.

Como o desenvolvimento dos reatores HTGR foi empreendido quase que exclusivamente por empresas privadas, lideradas pela General Atomic (G.A), o objetivo inicial foi a construção desse tipo de reator para produção de eletricidade. Segundo os cálculos teóricos, a eficiência de um HTGR seria da ordem de 39%, enquanto os PWR e BWR (Pressurized Water Reactor e Boiling Water Reactor) têm eficiência inferior a 33%.

Em 1957 foi dado o primeiro passo concreto pela indústria norte-americana (G.A) para a elaboração do projeto comercial de um reator de potência refrigerado por hélio e moderado a grafita. Vários reatores de pesquisa, críticos e subcríticos, foram montados e, em 1958, as companhias da HTRDA (High Temperature Reactor Development Associates Inc.) ofereceram-se para construir um reator de potência de alta temperatura de demonstração tipo HTGR — o Peach Bottom —,cujo projeto foi executado pela General Atomic. A construção da usina de Peach Bottom iniciou-se em 1962 e, em 1966, a criticalidade foi atingida. As características principais deste reator são apresentadas na tabela II.2.

Segundo técnicos da G.A., o Peach Bottom funcionou de maneira perfeita, conforme o esperado e forneceu os dados necessários à construção da usina de demostração comercial de Fort St. Vrain, instelado perto da cidade de Denver. Tabela 11.2

Parâmetros do reator Peach Bottom /28/

Nome da usina Peach Bottom 1 Potência: 115 MWt Potência elétr.	Tipo: HTGR Bruta: 42 MWe Líquida: 40 MWe Eficiência: 36%
Data de operação: 1967	
Localização: Peach Bottom, Pa., EUA. Operador: Philadelphia Electric Co. Projeto: General Atomica / Bechtel	
Vaso de Pressão	Cerne
Diâmetro, m 4,3 Altura, m 10,8 Espessura da parede, mm 63,5 Pressão da planta, kg/cm ² 9,3	Diâmetro, m 2,77 Altura, m 2,29 Inventário do combústivel, ton 0,24 U 1,5 Th
Refrigerante Hélio	Elementos de Combustível
Pressão, kg/cm ² 23,6 Temp. entrada, °C 344 Temp. saída, °C 728 Taxa de fluidez, (ton/h) 218	Material (U + Th)C Enríquecimento, % 93,2 Forma micro esferas Encamisamento grafita Número de elementos 804
Moderador grafita	Controle
Forma sólida Pêso, ton 20,5 Temp. média, °C 871,1	tipo barra número 36 material de veneno B ₄ C

O reator nuclear de Fort St. Vrain (HTGR) tem características bastante distintas das do Peach Bottom, como por exemplo, o vaso do reator, feito de concreto protendido (PCRV - Presstred Concrete Reactor Vessel). O PCRV contém o circuito primário completo (reator, gerador de vapor, circuladores de hélio, e o sistema de controle de produtos de fissão). As características básicas deste reator estão indicadas na Tabela II.3.

Tabela II 3

Parâmetros do reator Fort St. Vrain (28)

Nome da usina: Fort St. Vr	้อเก	Tipo HTGR
Potência térmica 842 MW _t	Potência elétrica	Bruta 34.2 MWe Líquida 330 MWe Eficiência 39.2%
Data de operação 1976		
Localização: Platteville, Col.,	, EUA	
Proprietário Public Service o	of Colorado	
Operador: Public Service of	Colorado	
Projeto: G.A./ Sargent and L	.undi	
Vaso de pressão	Concreto prot	Cerne
Diâmetro, m	18,6	Diâmetro, m 4,7
Altura m	32,3	Altura, m 6,0
Espessura parede, mm	4,55	Inventário de
Pressão do vaso, kg/cm ²	49,3	combustível (ton) 16,7
•		U/Th
Refrigerante	Hélio	Elementos de Combustível
Pressão, kg/cm ²	49,3	Material UC ₂ /ThC ₂
Temp, entrada, °C	400	Enriquecimento 93%
Temp saída °C	785	Forma (hex) microesferas
Taxa de fluidez, ton/h	3856	Encamisamento , Grafita
Moderador	Grafita	Controle
Forma	, prisma hex	Tipo , barra
Peso, ton	60 0	Número . 37 pares
Temp. média, °C	. 750	Material do
		veneno , , , , BaC

Concomitantemente ao desenvolvimento do HTGR para a produção de energia elétrica, foram desenvolvidos vários projetos sobre a sua aplicação em industrias químicas e siderúrgicas^(16,23,30,31). Foram realizados diversos congressos sobre a matéria, destacando-se o "Primeiro Encontro Nacional cobre a Aplicação de Calor Nuclear para Processos" (First National Topical Meeting on Nuclear Processo Heat Applications), realizado em Los Alamos, Novo México, em outubro de 1974

Entretanto, o programa nuclear do HTGR, encabeçado por uma empresa privada, G.A., e baseado acentuadamente no mercado imediato de energia elétrica foi seriamente afetado pela crise energética de 1973. Enquanto o reator de Fort St. Vrain acha-se em estágio inicial de operação comercial, a liderança de pesquisa e desenvolvimento de reatores de alta temperatura foi assumida pela República Federal da Alemanha

4) REPÚBLICA FEDERAL DA ALEMANHA: Na RFA, os reatores de aita temperatura foram desenvolvidos quase simulteneamente que nos EUA⁽¹⁰⁾.

Da experiência adquirida dos vários reatores de pesquisa (DIDO e MERLIN) montados no Centro Nuclear de Jülich, foi projetado o primeiro reator protótipo de potência de alta temperatura, o AVR (arbeitsgemeinschaft Versuchsreaktor), em operação desde 1967. Os parâmetros principais do AVR estão indicados na Tabela II.4.

Tabela II.4

Nome da usina: Jülich AVR		Tipo: H. T. R.
Potência térmica 51 MW _t	Potência elétrica	Bruta: 15,6 MWe Liquida: 13,6 MWe Eficiê, Ja: 28,3
Data de operação 1967		
Localização: H. Rhein Westfalem - I	R.F.A.	
Proprietario: AVR		
Operador AVR		
Projeto BB/Krupp		
Vaso de pressão		Cerne
Diámetro, m	5,81	Diâmetro, m 3
Altura m	. 24,9	Altura, m 3
Espessura parede, mm	40	Inventário de
Pressão do vaso, kg/cm ²	., 2	Combustivel, ton
		0,03 U 0,40 Th
Refrigerante	Hélio	Elemento de Combustível
Pressão, kg/cm ²	11	Material UC ₂ ThC ₂
Temp entrada, °C	. 270	Enriquecimento, % 93%
Temp saida, °C		Forma microesferas
Taxa de fluidez, ton/h	32,4	Encamisamento grafita
		N ^o de elementos 100.000
Moderador	Grafita	Controle
Forma	bolas	Tipo variação do fluxo
Peso, ton	~ 20	Material do
Temp média, °C	550	veneno B4C/Ti4C

Parâmetros do reator A V R /28/

Da mesma forma que nos EUA, foi projetado, e está em construção um reator de demonstração comercial da mesma linha do AVR, perto da vila de Uentrop-Schmehausen, a 10 Km a sudoeste de Hamm, com uma potência elétrica de 300 MWe. Este reactor, THTR-300 (Thorium High Temperature Reactor), é um conversor avançado e usa tório como material fértil. A sua construção iniciou-se na metade de 1971, e está programado para entrar em operação em 1979. Os dados principais deste reator estão indicados na Tabela II.5.

Tabela 11.5

Parâmetros do reator Uentrop-THTR-30C /28/

Nome da usina: Uen	trop THTR		Tipo: TH	TR
Potência térmica: 75	D MW _t Poté	ncia elétrica:	Bruta: Líquida: Eficiência	307,5 MWe 300,0 MWe : 40%
Data de operação, 19 Localização, Uentrop Proprietário: HKG Operador: HKG Projeto: BBC/HRG	79 R.F.A.			
Vaso de pressão	concreto protendio	lo	Cerne	
Diâmetro, m Altura, m Espessura parede,	15,9 		Diâmet Altura, Inventá combu: 6,49 T	tro, m 6 m 5,6 ário de stível, t 065 U h
Refrigerante	Hélio	Ele	mento de com	bustfvel
Pressão, kg/cm² Temp. entrada, °C Temp. saída, °C Taxa de fluidez, t	40 262 750 /h 177		Material Enriquecimento Forma	U,Th 93% microesferas grafita 55 675.000
Moderador	Grafita	Con	ntro le	
Forma Peso, tori Temp. média, °C	 esférica 130 610 	۲ ۴	Γίρο vi Material do vene	ariação do fluxo eno B₄C

16

Os reatores de potência de alta temperatura desenvolvidos na RFA (AVR e Schmehausem) diferem dos similares dos EUA (Peach Bottom e Fort St Vrain, respectivamente) na forma dos elementos de combustívei e em seu emplihamento no cerne do reator.

Atualmente, o governo alemão tem dispendido, juntamente com várias indústrias privadas do país (inclusive com participação da G A dos EUA), enormes esforços no sentido de desenvolver reatores do tipo HTR para fornecimento de calor para processos químicos que requerem elevadas temperaturas⁽⁵⁵⁾ Das publicações feitas na RFA sobre a utilização do calor nuclear de reatores HTR em processos industriais a maioria deles se refere à gaseificação do carvão, aplicação na siderurgia e produção de hidrogênio^(11,15,39) Convém salientar que a RFA possui grandes jazidas de linhito, e detém o "Know-how" de vários processos de gaseificação do carvão⁽⁴⁸⁾ que já foram usados, com pleno êxito, em escala comerciai durante a 2ª Guerra Munoial para a produção de gasolina.

Do programa nuclear alemão, fazem parte o desenvolvimento do projeto de dois reatores tipo AVR para a produção de calor de alta temperatura a ser usado em processos químicos industriais^(39,22): PR-500 de 500 MW_t e o PR-3000 de 3000 MW_t, e que será apresentado com maiores detalhes no próximo capítulo.

2.5 - Aplicação de Reatores HTR no Brasil

No Brasil pouco, ou quase nada, tem sido publicado a respeito da aplicação do calor nuclear em processos. Scarpinella, C.A. e. Hukai, R.Y. analisaram de uma maneira genérica alguns aspectos sobre a aplicação da energia nuclear na siderurgia, utilizando o xisto como fonte de redutores⁽³⁵⁾; Ting, D.K.S. apresentou em sua tese de mestrado um estudo da viabilidade neutrônica e termo-hidráulica de um reator. OTTO-HTR, utilizando plutônio como combustível⁽⁵⁰⁾. Em recente trabalho desenvolvido no IEA, em conjunto com o Centro Nuclear de Jülich, foi feita uma apreciação das múltiplas possibilidades da aplicação do HTR no Brasil⁽²⁷⁾. Neste trabalho definiu-se o mercado potencial para esse tipo de reator, e pecificamente, para utilização como fonte de calor primário em processos industriais químicos e siderúrgicos. As principais aplicações definidas neste estudo referem-se à siderurgia, gaseificação de carvão nacional, em refinarias de petroleo e no processamento do xisto pirouetuminoso.

3 - O REATOR PR-3000 COMO FONTE DE CALOR E DE ENERGIA ELÉTRICA

3.1 - Introdução

Neste Capitulo descreve-se suscintamente o reator PR-3000, escolhido como fonte primária de suprimento energético para uma usinc de xisto.

O projeto do reator PR-3000, de 3000 MW térmicos⁽⁴⁰⁾ foi desunvolvido em Jülich na República Federal da Alemanha para aplicações em processos industriais que utilizam calor de alta temperatura e geração de eletricidade Mais precisamente, o PR-3000 foi projetado para aplicação em dois tipos gerais de processos:

- a) Reforma do vapor
- b) Reforma do carvão com vapor

Em ambos os casos o projeto do seator e o mesmo; a única diferença está na parte interna de cada reformador. Para cada caso o posicionamento dos reformadores no interior do prédio do reator é praticamente o mesmo.

As energias calorífica e elétrica disponíveis no PR-3000, bem como a temperatura em que o calor pode ser fornecido, excedem o mínimo exigido por uma usina de xisto do tipo UCX. Para o acoplamento de uma UCX ao PR-3000, a única mudança que se faz necessária no projeto atual, seria a substituição dos reformadores por simples trocadores de calor gás-gás. Isto significa que o projeto do circuito primário do reator PR-3000 não seria alterado, e a UCX também não apresentaria nenhuma mudança radical, exceto para o aquecedor dos gases de processo, que ficaria contido no prédio do reator.

3.2 — Características Principais do PR-3000

1 – Refrigerante: – O reator PR-3000 usa o gás hélio como refrigerante. Este gás não apresenta limitação de temperatura, comum nos líquidos que sofrem mudanças de fase. O seu calor específico, constante numa larga faixa de temperatura e pressão, proporciona uma grande flexibilidade em termos de temperatura e pressão de operação. O gás hélio tem baixa secção de choque macroscópica para os nêutrons, não provoca moderação desses nêutrons e não constitui veneno para o reator. O hélio, gás quimicamente inerte, é mais compatível, em temperaturas elevadas, com os elementos estruturais e de combustível do reator nuclear que outros refrigerantes.

2 – Moderador: – A grafita é utilizada como moderador, refletor e matriz mecânica para as micro-esferas de combustível, constituidas de carbeto de Urânio e Tório. A transferência de calor é facilitada pelo uso da grafita tornando possível a operação do reator em níveis de temperatura elevadas (até 2000°C). A grafita tem uma característica inerente de segurança, que é sua alta capacidade calorífica que proporciona atuar como um excelente reservatório de calor, minimizando os efeitos de transientes súbitos de temperatura.

3 – Conversor: – O reator PR-3000 pode ser operado em ciclo de combustível que utiliza urânio altamente enriquecido e tório (conversor normal, razão de conversão 0,6), ou em ciclo otimizado para alta conversão (razão de conversão 0,9). Neste trabalho utiliza-se o projeto do reator que apresenta ciclo de conversão normal.

3.3 — Componentes Principais

3.3.1 - Elementos de Combustível

Os elementos de combustíveis são constituidos por bolas de grafita de 6 cm de diâmetro, contendo em seu interior uma distribuição estatística de partículas esféricas de carbeto de urânio e tório, cobertas por carbono pirolítico (Figura 3.1). Em uma das variantes, estas partículas cobertas estão localizadas numa camada esférica de 1 cm de espessura dentro de uma esfera de grafita com um diâmetro de 3 cm conforme ilustra a Figura 3.1⁽⁵⁶⁾.

3.3.2 - Ciclo de Combustível tipo OTTO

As bolas de combustível são empilhadas desordenadamente dentro de um vaso cilíndrico, sem que haja qualquer estrutura de suporte entre elas. O gás refrigerante hélio passa pelos espaços existentes entre as bolas (Figura 3.2). O reator é alimentado por bolas novas, não queimacas, que são introduzidas no topo do cerne, fluindo, por gravidade, até o fundo do cerne do reator, percorrendo-o somente uma vez, sem reciclagem. Depois de alcançar a queima ("burn up") especificada, em cerca de 3 anos, elas são removidas do fundo do cerne. Este é o chamdo ciclo de combustível OTTO (<u>Once Through Then Out</u>).

A corrosão da superfície do elemento de combustível e escape dos produtos de fissão devem ser limitados e, para que isso ocorra, o gradiente da temperatura no interior do elemento de combustível

.'

61

Figura 3.2 – Fluxo do gás hélio no circuito primário

.

deve ser tão baixa quanto possível, o que é conseguido fazendo-se com que o gás refrigerante flua na mesma direção dos elementos de combustíveis. (Figura 3.2). Os dados dos elementos de combustível são apresentados na Tabela III.1.

Tabela III.1

Dados dos	Elementos de (Combustível
-----------	----------------	-------------

OPERAÇÃO EM CICLO DE TÓRIO	ZONA 1		ZONA 2
Enriquecimento inicial	6,7%		8,9%
"Burnup" (queima)	99.200		112,180MWD/ton
Tempo de permanencia do com			
bústível no cerne do reator	1,547 dias		2.030 dias
Razão de conversão		0,625	
Potência máxima das bolas	2,37		2,65 KW/bola
Máxima queima	102.116		118.317 MWD/tor
Fluxo de nêutrons	5,77 x 10 ²¹ (E > 100 KeV)	6,04 x 10 ^{2 t} n/cm
Material fissil no cerne do	~		
reator		1.514kg U - 235/U·233	
Temp Máx de saída do gás .	997	•	971°C
Temp. máx da superfície do			,
Elemento combustível	1.002		975' C
Temperatura máx do com-			0 -
bustível	1.010		1,010°C
Queda de pressão no cerne do			
reator		~ 0,4 bar	

3.3.3 - Vaso do Reator

No projeto da usina do PR-3000 são apresentados duas alternativas para o vaso de pressão: de concreto protendido e de aço. Como o Brasil possui, "Know-how" avançado no campo da tecnologia do concreto, é mais interessante considerar essa possibilidade.

O vaso de concreto protendido tem a forma de um cilindro, instalado verticalmente. (Figura 3.3). Ele contem uma cavidade maior no centro, onde é colocado o cerne do reator, e 12 cavidades periféricas de penetração, dispostas simetricamente, onde são instalados os geradores de vapor o reformadores (Figura 3.3). Os reformadores, em número de oito, são conectados por tubos diretamente à cavidade do cerne, Oito tubos adicionais ligam os reformadores aos geradores de vapor, secudo dois reformadores conectados a cada gerador de vapor. No topo do vaso (Figura 3.3) há 109 pequenas penetrações para barras de controle e 12 grandes penetrações para a remoção dos refletores de granda do topo e dos lados. O vaso do reator está localizado dentro do prédio de contenção sob paredes concreto armado.

Os principais dados do vaso do reator são mostrados na Tabela III.2.

Figura 3.3 - Representação esquemática do vaso do reator

Dados do Vaso do Reator

Diâmetro interno da cavidade do cerne do reator	15 m
Altura interna da cavidade do cerne do reator	14 m
Número de tampas	(12)
Diâmetro das tampas	4;4 m
Diâmetro externo do vaso	34 m
Altura externa do vaso	27 m
Pressão de operação	40 bar
Pressão de acidente	48 bar
Velocidade de despressurização	1 bar/seg.
Espessura da parede da membrana interna	2 cm
Temperatura da membrana interna	máx. 50°C
Fluxo de calor através da membrana interna	máx. 3kW/m²
Fluxo integrado de calor para a cavidade da membrana	máx. 3MW
do cerne	(operação normal)
Sistema de refrigeração	Água ($\Delta T \sim 10^{\circ} C$)
Material do vaso	e pressionado do
iado de fora por	cabos e tendões
verticais.	
Material da membrana, tampas e penetrações	Αçο
Isolamento do cerne	carvão empedrado.
Isolamento da tampa	i ∻ placas metalicas

3.3.4 - Cerne do Reator

A estrutura externa do cerne (Figura 3.2, 3.4) é constituida, na direção radial, de uma espessa camada de 70 cm de grafita, de uma blindagem metálica (espessura 0,3 m) com buracos para o gás refrigerante, e de uma camada de 70 cm de isolante térmico constituido de carvão empedrado para proteger a membrana do vaso do reator. O refletor superior é constituido de blocos de grafita, seguros por barras de aço.

Os dados principais do cerne do reator são apresentados na Tabela III.3.

O refletor superior pode ser removido por controle remoto, se necessário, pelo uso das penetrações das barras de controle e da abertura adicional no topo do vaso. Entre a linha do teto e a blindagem térmica superior há uma camada de carvão de alta densidade de 70 cm de espessura para seu isolamento.

No fundo do cerne do reator há três saídas, afuniladas, projetadas para a remoção dos elementos de combustíveis esféricos. O refletor fixo inferior que forma o suporte, como é usual em reatores do tipo "Pebble-Bed", é feito de blocos hexagonais de grafita, que formam a câmara de coleção de gás quente (altura 1,1m). O fundo desta câmara é também constituida por grafita. Entre esta grafita e a membrana do vaso de pressão há uma camada de carvão de alta densidade, separada por uma chapa de aço, que impede o escape do gás refrigerante; todo este conjunto repousa sobre placas suporte de aço.

O gás refrigerante do sistema primário flui da seguinte maneira (Figura 3 2): após percorrer o cerne, onde aumenta de temperatura, de 280°C para 980°C, ele passa atracis de uma câmara localizada

abaixo do cerne ativo do reator e, então, flui através de oito condutores axiais para os reformadores. A queda de pressão no circuito primário é compensada por um circulador que leva o hélio de volta através de condutores coaxiais exteriores para a câmara de coleção de gás frio, disposta no fundo do reator (temperatura do hélio nesse ponto é de 250°C). A câmara de gás frio é anular e envolve a câmara de gás quente, fazendo parte portanto da blindagem térmica do reator. Desse modo, as paredes do conduto de gás quente são mantidas em baixa temperatura.

Tabela 111.3

Dados do Cerne do Reator

Potência térmica	3000 MW
Densidade de potência média	5 MW/m ³
Altura do Cerne	C m
Diâmetro do Cerne	11,3 m
Espessura do refletor radial	0,7 m
Espessura do refletor superior	1,0 m
Número de tubos de descarga de elementos combustíveis	3
Espessura média do refletor inferior	2 m
Espessura do isolante de carvão	0,75 m
Espessura da blindagem térmica de ferro	0,3 m
Altura da câmara de gás quente	1,1 m
Temperatura do refletor superior	300°C
Temperatura crítica no refletor radial	600°C
Temperatura do refletor inferior	~ 1000°C
Temperatura da blindagem térmica de ferro	~ 300°C
Temperatura do isolamento de carvão	< 300°C

Da câmara de gás frio, no fundo do reator, o hélio passa através de buracos verticais na blindagem térmica para a câmara superior de coleção de gás. O hélio flui, então, através de orifícios de entrada no refletor superior para finalmente entrar no cerne do reator (temperatura de entrada do hélio 280°C).

Os principais dados referentes aos condutos de hélio estão indicados na Tabela III.4.

3.3.5 - Circuladores de Hélio

A queda de pressão de hélio no sistema primário é compensada por quatro circuladores de hélio, montados no vaso do reator e conectados no tubo de gás de saída do gerador de vapor (Figura 3.2).

Funcionam através de motores de indução elétricos, refrigerados por água. Quando o reator é desligado, o sistema de emergência a diesel, garante o funcionamento dos circuladores de hélio, de modo que o calor residual do reator seja removido.

Para o caso de se usar simples trocadores de calor gás-gás ao invés de reformadores haverá, provavelmente, uma pequena mudança na queda de pressão, embora, como será visto no Capítulo 5 e no ítem 3.3.7, a magnitude do calor trocado é quase a mesma em ambos os casos.

Tabela 111.4

Dados dos Condutos de Hélio

Número de condutos	8
Condutos de gás quente	(950° C)
Temperatura do hélio	950°C
	39,3 bar
Taxa de fluidez	205 Kg/seg.
Velocidade	50,7 m/seg.
Diâmetro interno	1300 m
Camada de isolamento	100 m
Temperatura do conduto coaxial	300°C
Temperatura do conduto metálico	950°C
Condutos de gás frio	
Temperatura do hélio	250° C
Pressão do hélio	39,9 bar
Velocidade	36,4 m/seg.
Taxa de fluidez	205 Kg/seg.
Diâmetro interno	1800 mm
Camada de isolamento	100 mm

Tabela III.5

Dados dos Circuladores de Hélio

Número de circuladores	4
Temperatura de entrada	250°C
Pressão de entrada	38,6 bar
Pressão de saída	40,0 bar
Taxa de fluidez (He)	205 Kg/seg.
Potência	11 MWe
Velocidade	6.000 rpm
Queda de pressão no sistema	
Cerne	0,4 bar
Trocadores de calor (reformador)	0,2 bar
Geradores de vapor	0,45 bar
Condutos de gases e outros	
Condutores através do reator	0,35 bar

Figura 3.4 - Projeto do sistema primário do THTR-OTTO.

3.3.6 - Sistema de Carregamento do Rostor

A carga e descarga dos elementos combustíveis do reator é relativamente simples dado a facilidade de manuseio dos elementos esféricos de combustível e ao sistema OTTO, que permite alta disponibilidade do reator, não sendo necessário desligá-lo para recarga.

Tabela IH.6

Dados do Sistema de Manuseio do Combustível

Diâmetro dos elementos de combustível	8 cm
Número de elementos de combustível no cerne	3,25 x 10 ⁶
Número de posição de carregamento	42
Número de tubos de descarga	3
Entrada de elementos novos	\sim 4000 bolas/dia
Saída de elementos queimados	\sim 4000 bolas/dia
Tempo de vida do elemento no cerne	~ 3 anos
Pressão suportada pelas bolas em todas as partes do manuseio	40 bar / /
Operação	, contínua
Atividade do elemento queimado	\sim 100 Ci/bola
Capacidade do carro transportador	5400 bolas ≃ 1m ³
Temperatura em todas as etapas do manuseio	50°C

.

3.3.7 - Trocadores de Calor (Reformador do Vapor e Gerador de Vapor)

O hélio deixa a câmara de gás quente na temperatura de 950°C através do conduto coaxial de gás aquecido, sendo a seguir introduzido no Reformador (Figura 3.2). Após percorrer o Reformador, o hélio entra no Gerador de Vapor, dele saindo na temperatura de 250°C, dirigindo-se para a câmara de gás frio. Cada Gerador de Vapor está conectado em dois Reformadores (Figura 3.2). Alguns dados dos trocadores de calor estão indicados na Tabela 111.7.

Tabela III.7

Principais Dados dos Trocadores de Calor

Potência térmica do PR-3000 Intervalo de temp. no cerne do reator Intervalo de temp nos trocadores de calor Taxa de fluidez do hélio	3000 MW _t 280 ∻ 980°C 950 ∻ 250°C 820 Kg/s
Calor maximo fornecido pelo intervalo de alta temperatura 950 — 700°C Vapor produzido (540°C/195 bar) Quantidade de vapor usado no processo	≌ 1071 MWt 2678 ton/h 905 ton/h
Número de geradores de vapor Número de reformadores de vapor Calor máximo fornecido pelo intervalo de baixa temperatura 700°C – 250°C	4 8 ≆ 1929 MWt

Para se acoplar a usina de xisto ao reator PR-3000, os Reformadores serão substituidos por simples trocadores de calor gás-gás, que operarão na mesma faixa de temperatura.

3.3.8 - Prédio de Contenção do Reator

Estão localizados dentro do prédio de contenção do reator, o circuito primário, sistema de segurança, refrigeradores e sistema auxiliar de segurança. O edifício de contenção é dividido em três partes:

1 – um compartimento superior onde estão instalados o sistema de carregamento e barras de controle;

2 - um compartimento abaixo do cerne, onde está localizada a máquina de descarga;

3 - um compartimento adicional onde estão os outros componentes. Os dados do prédio de contenção estão indicados na Tabela III.8.

3.3.9 - Sistema de Purificação de Hélio

O sistema de purificação de hélio remove as impurezas do refrigerante, tais como H₂O, H₂, CO, CO₂ produtos de fissão gasosos, e.g., Iodo-137. O sistema de purificação consiste de camadas de óxido de cobre, peneiras moleculares e filtros de retenção dos produtos de fissão.

Tabela III.8

Dados do Prédio de Contenção

Altura interna													•				 •	 •••		65 m
Diâmetro interno						, .											 •	 		46 m
Espessura da parede																		 • •		1,5 m
Espessura da fundação																	 •			5 m
Volume livre																	 •	 		~ 70000,0 m ²
Pressão normal													•					 		1 bar
Pressão de acidente (pe	/da	do	qás	de	refi	iqe	rac	ào	·Ci	rcu	nto	ם כ	rin	nái	rio)		 		3 bar
Material																	 		con	creto protendid

4 – A TECNOLOGIA ENVOLVIDA NA UTILIZAÇÃO DO XISTO

4.1 - Introdução

O termo xisto (provém da palavra grega "schistos" que significa dividido), embora geologicamente impróprio, é geralmente usado na língua portuguesa para designar rochas sedimentares, ou metamórficas de origem sedimentar, de textura foliácea, constituindo lâminas (ou folhas) muito delgadas, (espessura da ordem de milímetros) que contém disseminado em sua estrutura mineral um complexo orgânico. Em geologia, a designação mais correta para tal rocha seria folhelhos. Entretanto, há muita controvérsia sobre o assunto; a palavra xisto tem sido usada para designar grupos de rochas cujas origens são diferentes, mas apresentam em comum a forma extratificada (ou dividida).

Neste trabalho a palavra xisto será usada como sinônimo de folhelho.

De acordo com as características da matéria orgânica existente no xisto, costuma-se dividi-lo em duas classes distintas:

- a) xisto betuminoso são rochas compactas impregnadas de betume (mistura de hidrocarbonetos naturais) que pode ser extraído pelos solventes comuns de petróleo;
- b) xisto pircipetuminoso nestas rochas, o complexo orgânico presente, chamado querogênio, não é solúvel nos solventes orgânicos. A matéria orgânica do xisto pirobetuminoso somente pode ser extraída mediante aquecimento, onde ela é retirada da matriz mineral na forma de óleo e gás.

4.2 - Reservas de Xisto

4.2.1 - Aspecto Mundial

As reservas mundiais de xisto, representadas pela quantidade total de óleo que pode ser recuperada pela tecnologia existente nos días de hoje, correspondem em pelo menos três a quatro vêzes a quantidade de petróleo encerrada nas jazidas conhecidas.

Os EUA detêm a maior parcela deste imenso manancial de óleo, avaliada em mais de 2,0 trilhões de barris de óleo⁽²⁹⁾. O Brasil vem logo abaixo dos EUA, em segundo lugar, com reservas da

ordem de 800 bilhões de barris de óleo (aproximadamente 120 bilhões de toneladas métricas de rocha)⁽⁵⁷⁾. A terceira posição è ocupada pela URSS⁽²⁹⁾ com cerca de 21 bilhões de toneladas métricas. No entanto, existem depósitos de xisto espalhados por todo o globo, muitos dos quais (inclusive no Brasil) não foram ainda devidamente cubados.

4.2.2 - Reservas do Brasil

Existem depósitos de xisto em quase todos os Estados do Brasil, ocorrendo em geral na forma de afloramentos. Embora um grande número de pesquisadores e técnicos tenham estudado determinados aspectos de quase todas as formações de xistos, acredita se existirem ainda depósitos desconhecidos, e dos já existentes poucos são os que foram realmente cubados

A Tabela IV 1 mostra um resumo das principais características dos depósitos indicados no mapa da Figura 4.1, página 31.

Os valores apresentados na coluna "Análise da rocha" correspondem ao valor médio das medidas, nos Estados indicados nas cinco primeiras colunas o valor médio é computado considerando os diversos depósitos do mesmo Estado; o valor médio do depósito do Vale do Paraíba engloba três camadas de xisto com características geologicas diferentes (papiráceo, semipapiráceo e maciço); quanto ao xisto da Formação Irati os valores médios correspondem às diversas análises das amostras da jazida de São Mateus do Sul

Todavia, os números correspondentes à possança dos depósitos indicados na literatura não são congruentes. Há estimativas que consideram valores mais elevados, por exemplo, Prien C.H. da Universidade da California admite que os depósitos do Brasil podem fornecer um total de pelo menos 3 trilhões de barris de óleo⁽²⁹⁾ Mas, com os dados da Tabela IV.1 pode-se ter uma idéia do povencial energético representado pelo xisto do Brasil.

O maior depósito brasileiro e o da Formação Irati; a sua localização não poderia ser melhor. Inicia-se em São Paulo, perto de Rio Claro, e se extende até o Uruguai, formando um grande S, sendo interrompido numa curta extenção entre o Rio Grande do Sul e Santa Catarina (Figura 4 1), próximo aos maiores centros consumidores do País Desta imensa formação, três áreas foram primordialmente selecionadas pela Petrobras para exploração comercial. A primeira destas áreas corresponde à jazida de São Mateus do Sul no Paraná, com 82 Km² de superfície e encerra cerca de 647 milhões de barris de óleo, 10 milhões de toneladas metricas de enxofre, 4,5 milhões de toneladas métricas de GLP e 22 bilhões de m² de gas combustível leve⁽⁵⁸⁾. As outras duas jazidas estão localizadas no Rio Grande do Sul, nas áreas de D. Pedrito e São Gabriel, e têm as mesmas características de São Mateus do Sul.

4.3 - A Indústria do Xisto

4.3.1 - Introdução

Quando se iniciou a explosão comercial dos lençois petrolíferos por volta de 1859, a indústria do xisto encontrava-se em franco desenvolvimento. Sabe-se que, antes de 1800, existiam cerca de 200 pequenas fábricas na costa leste dos EUA que obtinham querosene do xisto betuminoso. Mas, as facilidades de se trabalhar com um material líquido – o petróleo – e a sua abundância cada vez maior, tornou as indústrias de xisto economicamente insustentáveis. Entretanto, as pesquisas de métodos econômicos de industrialização do xisto, através dos quais pudessem ser fornecidos refinados a preços competitivos com os do petróleo continuaram, embora lentamente, até os dias atuais.

Em época de crises mundiais político-econômicas, o xisto volta a ser considerado seriamente como uma das soluções alternativas. Assim durante a 2ª Guerra Mundial, várias indústrias do xisto

Tabela IV.1

.

Características dos Depósitos de Xisto no Brasil⁽³²⁾

Ertado	Danásitos	Dete de		Bergua				
	Depositos	Formação	Material Volátil	Óleo	Gases	Água	Resíduos	n eserva
Pará	Ao longo dos rios Xingú, Trombetas, etc.	Devoniano	8-12					desconhecida
Amazonas		Devoniano	8-12					desconhecida
Maranhão	Codó, Serra da Desordem, Barra do Corda	Cretáceo I		10,2	3,0	3,3	83,5	 desconhecida
Alagoas .	Camaragibe, Riacho Doce, Bica da Pedra, Maragogy	Cretáceo `		8,80	6,1	10,30	74,80	desconhecida
Bahia	Maraú	Cretáceo		43				64.000 ton
São Paulo	Vale do Paraíba	Terciário		8,1	2,28	35,6	54,1	Total: 5,0 bilhões de barris. Econômica: 1,5 bilhões de barris
Estados da Região Sul	Formação Irati	Permiano		7,3	3,0	6,8 .	82,9	Recuperável : 800 bilhões de barris

- b -- XISTO TERCEÁRIO DE SÃO PAULO Afloramentos: Vale do Paraíbe
- 7 -- XISTO DO AMAPA
- 8 XISTO PERMIANO DA FORMAÇÃO IRATI

floresceram, algumas sobrevivendo até há cerca de 10 anos atras. Atualmente, com a crise do petróleo de 1973, o problema da industrialização do xisto voltou a ser colocado em pauta, ganhando novo impulso com a intensificação das pesquisas de beneficiamento em todo o mundo.

4.3.2 - A Indústria do Xisto no Mundo

A seguir são apresentadas as atividades de alguns países que mais de destacam na indutrialização do xisto.

1) — **Escócia** — Por volta de 1862 foi iniciada a industrialização comercial do xisto, atingindo seu ponto máximo em 1913, quando eram utilizados cerca de 3,3 milhões de ton/ano. Em 1962 a indústria de xisto escocesa parou, por razões econômicas.

2) – Suécia – Face às condições precárias de combustivel devido a deflagração da 2ª Guerra Mundial, foi criada, em 1940, a Companhia de Óleo de Xisto da Suécia. Esta companhia chegou a processar 2 milhões de ton, por ano Em 1966, a empresa foi fechada.

3) – Austrália – O xisto deste país corresponde a um dos mais ricos em óleo do mundo (cerca de 530 l/ton de rocha). A tentativa mais significativa de industrialização deste xisto iniciou-se em 1940. O nível mais alto de processamento foi de 350 000 ton/ano em 1947. Esta industria funcionou até 1952.

4) – Espanha – A indústria de xisto neste país alcançou elevado nível de processamento, cerca de 1 milhão de ton. anuais em 1950, encerrando suas atividades em 1966.

5) – África do Sul – As operações para a industrialização do xisto iniciaram-se em 1935, alcançando o nível de 250.000 ton/ano Dado o pequeno tamanho do depósito que estava sendo explorado (Ermelo), a indústria cessou suas atividades em 1962.

6) – França – A indústria do processamento de xisto da França, considerada como uma das pioneiras, atingiu seu nível maximo de processamento em 1950 (500 000 ton/ano). Depois de várias paradas intermitentes, a indústria foi definitivamente fechada em 1957

7) – URSS – A indústria do xisto na URSS não parou como os demais países anteriormente citados. Nesta nação, o xisto é quase que totalmente usado para a produção de gás de rua, ou queimado diretamente em termoelétricas Atualmente, cerca de 24 milhões de ton/ano são processados, existindo uma tendência de aumentar a produção de refinados em detrimento da utilização em termoelétrica.

8) - China Continental - Os dados sobre a indústria do xisto neste país são incertos; entretanto, estima-se que são processados entre 45 a 55 milhões de ton/ano de xisto.

9) – Alemanha Ocidental – Existe uma pequena usina industrial na localidade de Datterhausen, que produziu inicialmente (1961) eletricidade e cimento do resíduo, operando com uma carga de 230.000 ton/ano. Antes de 1966, essa indústria foi fechada.

Enfim, com exceção da URSS e China Continental, todos os países encerraram suas atividades antes de 1966.

Existem depósitos razoáveis de xisto em muitos outros países, mas, nenhum deles atingiu um nível de industrialização significativo, inclusive os dois países que possuem as maiores reservas, i.é, EUA e Brasil.

Nos EUA foram desenvolvidos e aperfeiçoados vários processos de retortagem para o xisto nos últimos 50 anos^(6,42). Construiram-se muitas usinas-piloto, para testes e aperfeiçoamento de processos de extração de óleo, tanto pela indústria privada como pelo próprio governo norte-americano. Logo

após a crise do petroleo de 1973, a industrialização do xisto teve um avanço significativo e várias usinas comerciais foram programadas para entrar em funcionamento na próxima década⁽¹⁸⁾.

No Brasil, em quase todos os depósitos indicados na Tabela IV 1 houve tentativas de exploração comercial, conseguindo se inclusive a montagem de pequenas indústrias, como e o caso do depósito do Vale do Paraíba e de diversos sitios da Formação Irati⁽³²⁾ O depósito de xisto do Vale do Paraíba despertou interesse de industrialização desde o final do seculo passado; em 1881 foi implantada a primeira usina comercial de xisto, que operava com 4 retortas "Henderson" de 750 kg cada, produzindo óleo lubrificante, gás parafina e um produto semelhante ao querosene. Esta usina durou somente 3 anos. Em seguida, diversas tentativas foram feitas, mas todas se frustraram por motivos técnicos, econômicos e políticos.

Em 1950, o governo brasileiro se interessou pelo xisto do Vale do Paralba, sendo criado a CIXB (Comissão de Industrialização do Xisto Betuminoso), com o objetivo de estudar os depósitos de xisto do país a fim de proporcionar a sua exploração racional.

Com a criação da Petrobrás, a CIXB foi extinta em 1954, e, em seu lugar, foi cuiada a SIX (Superintendência da Industrialização do Xisto), constituindo-se em uma das unidades da nova empresa estatal.

Das empresas privadas, a única que substituiu até há pouco tempo foi a CIRB (Companhia Industrial de Rochas Betuminosas), criada em 1948. Dado a entraves de ordem técno-econômicas e políticos esta empresa pediu concordata em 1972.

Enfim, a única empresa que atualmente desenvolve trabalhos de pesquisa com o xisto é a Petrobrás S.A., através de sua unidade, a SIX. Em adição, virios pesquisadores de diversas universidades têm estudado algumas formações de xisto do Brasil sob os mais diversos aspectos: o geológico⁽³⁾, o químico⁽⁹⁾, e as possibilidades de utilização industrial⁽⁸⁾

Cabe ressaltar aqui o objetivo definido pelo projeto Xisto-química, levado a cabo pela Universidade Federal do Rio de Janeiro¹⁸³ de obter do xisto materiais fundamentais para a sociedade, tais como vestuário, remédios e outros produtos cujas finalidades são mais nobres que a sua utilização como combustivel; ressalta se ainda que qualquer utilização deve ser feita de modo a não afetar o equilíbrio ecológico

4.4 – Processos de Retortagem do Xisto Pirobetuminoso

4.4.1 - Introdução

Como já foi assinalado anteriormente, a matéria orgânica (querogênio) disseminada na matriz mineral do xisto pirobetuminoso não e extravel pelos solventes orgânicos comuns; a maneira de separar o querogênio da estrutura mineral é por aquecimento da rocha, provocando o craqueamento da matéria orgânica.

O problema do aproveitamento do querogénio, na forma de refinados (óleo, gasolina, etc.) é bastante antigo e, em conseqüência, a literatura sobre o assunto é vastíssima. Inúmeras patentes sobre retortagem do xisto pirobetuminoso foram registradas e, no entanto, quase todas fracassaram.

Agrupando-se os vários processos de retortagem que obtiveram algum êxito, e os que são objeto de estudo atualmente, pode-se dividi los em dois principais:

a) Local ('in situ'');

b) Superficial

4.4.2 - Método de Retortagem Local ("In situ")

Este método, recentemente desenvolvido nos EUA, é aplicado em depósitos de xisto localizados profundamente na crosta terrestre. Neste processo, a retorta é o próprio local da mina, onde o xisto sofre pirólise, liberando os produtos gasosos e óleo. Para a retirada dos gases e óleo que se acumulam em cavidades construídas no nível inferior da retorta, bem como para a injeção de ar para alimentar a combustão, são construídos canais ou galerías, em comunicação com a retorta natural. A retorta é delimitada por uma região interna do depósito, onde o xisto é fraturado por explosão ou hidraulicamente. A combustão interna fornece o calor necessário ao craqueamento e à própria fratura do xisto. O óleo é bombeado para a superfície e armazenado nos tanques⁽⁶⁾. Esta variante da retortagem "in situ" está sendo atualmente estudada pelo Bureau de Minas dos EUA⁽¹⁸⁾.

Outras empresas, como a Ocidental Petroleum e a Garret Research and Development⁽¹⁸⁾ tentaram uma outra variante deste método que consiste em construir uma câmara subterrânea a qual é ocupada com o xisto britado no subsolo. Depois de selar a câmara, a pirólise é feita por combustão interna, alimentada com o ar proveniente da superfície. O óleo de xisto é drenado por uma cavidade feita no teto da câmara^(24,54).

Outras variantes do método "in situ" foram testadas na Suécia e EUA pelas companhias Shell Oil, Equity Oil e Sinclair Oil. O método sueco consiste no aquecimento do xisto por meio de uma resistência elétrica⁽¹⁸⁾; Sinclair Oil está testando a combustão interna⁽¹⁴⁾; a Shell Oil usa a técnica de retortar o xisto por vapor gerado com o gás obtido durante a retortagem⁽¹⁸⁾.

4.4.3 - Método de Retortagem Superficial

Este é o método convencional mais usado para se obter óleo de xisto. A rocha depois de minerada, sofre britagem, classificação e então é retortada Durante a retortagem, o aquecimento em torno de 500°C - 700°C provoca o craqueamento do querogênio, desprendendo óleo, gás e vapor d'água.

As principais variantes deste método são:

 O calor é produzido dentro do vaso de pirólise pela queima do carvão residual deixado no xisto já retortado. Atualmente várias usinas-piloto que utilizam variantes deste processo estão em operação nos EUA. Os processos e as respectivas companhias que os desenvolveram são⁽¹⁸⁾: Gas Combustion Retort, U.S Bureau of Mines; Union Retort, Union Oil Co. of California; Paraho Kiln, Development Engineering Col Inc.

2) Os gases quentes, aquecidos externamente à retorta, circulam através da mesma, proporcionando o calor necessário ao craqueamento do querogênio. As companhias e seus respectivos processos utilizados em plantas-piloto e de demonstração industrial são: Process S.G.R., Union Oil Co. California⁽¹⁸⁾; Paraho Kiln, Development Engineering Co. Inc.^(18,54); processo Petrosix, Petrobrás S.A; I.G.T, Institute of Gas Technology⁽¹²⁾

3) Na terceira variante, o calor necessário ao craqueamento do querogênio é transferido por sólidos previamente aquecidos As companhias que utilizaram esta variante são as seguintes: Lurgi Ruhrgas⁽⁴³⁾; The Oil Shale Corp. (Tosco II)⁽⁴²⁾

4) Nesta outra variante, a retortagem e feita por transferência de calor através da parede da retorta⁽³²⁾. Várias unidades industriais utilizando este método já estiveram em operação na Escócia (retorta Westwood), Puertollano na Espanha (retorta Rockesholm), Suécia (retorta Kvantorp), África do Sul (retorta Salermo), EUA (retorta Laramie). Este método de retortagem está em desuso atualmente. Com respeto às três primeiras variantes do método superficial, diversas usinas comerciais foram programadas pelas seguintes companhias: a Standard Oil e a Gulf Oil anunciaram a construção de uma usina comercial por volta de 1980⁽¹⁸⁾; a construção de uma usina de 100.000 barris/dia em Utah para 1980, utilizando a retorta Paraho foi prometida por um consorcio de 17 companhias da Paraho⁽¹⁸⁾; sabe se que a Petrobras S A, embora não tenha publicado detalhes especificos, tem planos para a construção de uma usina comercial utilizando o processo Petrosix

A diversidade dos metodos e de suas inumeras variantes empregadas na retortagem do xisto é facilmente explicada atraves das diferenças fundamentais existentes entre as rochas dos diversos depositos. Para um determinado depósito, as características peculiares da rocha exigem o desenvolvimento de um processo específico de intortagem a ser aplicado no xisto da jazida em estudo. Assím, por exemplo, no caso dos dois maiores depósitos brasileiros, o processo utilizado para a retortagem do xisto frati (Petrosix) não serve inteiramente para o depósito do Vale do Paraíba, devido principalmente a diferença marcante na unidade (Tabela iV 1).

4.5 – O Processo Petrosix

4.5.1 - Introdução

Por volta de 1954, a Petrobrás iniciou os estudos para o aproveitamento do xisto do Vale do Paralba na procura de um metodo de retortagem, no qual o óleo extraído dos folhelhos alcançasse níveis de preço comparáveis ou menores ao petroleo importado.

Depois de testar vários sistemas de retortagem⁽⁵³⁾ sem ter chegado a um resultado satisfatório a SIX iniciou, em 1957, em paralelo aos estudos do xisto do Vale do Paraíba, os primeiros testes de laboratório com o xisto da Formação Irati, area de São Mateus do Sul, no Paraná.

Os otimos resultados conseguidos com o xisto de S. Mateus do Sul levaram os tecnicos da SIX a efetuar experiências em escala piloto. Através do teste de varios tipos de retortas, aprimorou se uma variante do processo de retortagem efetuada por gases aquecidos externamente, chegando-se ao predecessor do atual sistema Petrosix, denominado Processo RM⁽⁵³⁾

A simplicidade do sistema, as lucilidades de controle do processo e os excelentes resultados obtidos (conseguiu se repetir o ensaio de Fischer em mais de 100%⁽⁵³⁾) provaram a viabilidade técnico-econômica preliminar para um empreendimento industrial, com processamento de 3 200 m³/día de rocha. Uma avaliação econômica indicou, pela primeira vez, a competitividade do custo do óleo de xisto com o petróleo importado.

Diante desses resultados, a SIX não poupou esforços para o aprimoramento desse processo, chegando dessa meneira ao processo denominado PETROSIX

4.5.2 - A Usina Protótipo Semi Industrial de Irati (U.P.I.)

Uma vez concluido com sucesso os testes do processo Petrosix efetuado na Usina Piloto, a SI.X projetou a construiu na cidade de S. Mateus do Sul no Estado do Paraná, uma usina protótipo semi-industrial. A UPI teria a finalidade de realizar as últimas experiências sobre o processo Petrosix para o xisto da jazida previamente delimitada de S. Mateus do Sul, de modo a viabilizar a construção de uma usina comercial.

A usina (fluxograma na Figura IV 2), composta de 10 unidades básicas⁽⁵³⁾ apresenta os parâmetros tecnicos indicados na Tabela IV 2

Tabela 1V.2

Parametros tecnicos da U.P.L. /57/

Carga de xisto	100 ton/h
Produção de óteo	7,4 m³/h
Recirculação de gases	73,2 ton/h.
Volume de gás para a unidade de enxofre	2,4 ton/h.
Produção de enxotre	1,6 ton/h.
Gás depurado da fabricação do enxofre (sento de H ₂ S)	1,0 ton/h.
Aqua de retortagem	7,0 m [*] /h.
Capacidade térmica do aquecedor	7,6 x 10 [*] Kcal/h
Poder calorífico do gás bruto	8000 Kcai/m³
Potencia da turbina no compressor de gases	4000 HP
Diâmetro interno da retorta	5,5 m
Altura total da retorta	35 m
Consumo de vapor de alta pressão	14 ton/h
Consumo de vapor de baixa pressão	30 ton/h
Consumo de energia elétrica	2200 KWe
Consumo de água de refrigeração	2800 m³/h

Figura 4.2 - Fluxograma de Processo (U.P.I.).

4.5.3 - Descrição do Processo

De acordo com o fluxograma da UPI, mostrado na Figura IV.2, partículas de xisto, provenientes da mineração, sofrem britagem, são classificadas e depois entram num vaso vertical ou retorta, pelo topo. Uma vez dentro da retorta, as partículas descem por gravidade em contracorrente com um fluxo gasoso aquecido externamente ao vaso, que fornece todo calor necestário à pirólise. No vaso de pirólise formam-se 4 zonas distintas, por onde escoam as partículas de xisto, na seguinte sequência:

a) Zona de secagem – aqui o xisto frio entra em contato com a corrente ascendente de gases quentes, aquecendo-se e liberando toda a água nele contida, que se incorpora à corrente de gases na forma de vapor.

b) Zona de aquecimento -- após as partículas perderem toda a sua umidade elas atravessam esta zona, onde a quantidade de calor recebida eleva a temperatura até o ponto no qual se inicia a pirólise, isto é, começa o desprendimento de hidrocarbonetos.

c) Zona de pirólise – neste local ocorre o craqueamento da matéria orgânica, desprendendo-se vapores de óleo, gases de pirólise e vapor d'água.

d) Zona de resfriamento – o xisto já retortado sofre resfriamento nesta zona, perdendo grande parte do calor para o fluxo de reciclo frio ascendente.

Em seguida, o xisto retortado é descarregado num coletor, misturado com água e bombeado em suspensão até uma represa. Os vapores ascendentes, provenientes da zona de pirólise se condensam logo abaixo do topo da retorta ao entrar em contato com o xisto frio, formando uma neblina de óleo que é arrastada pelo gás.

A mistura de fluidos composta por gases, vapor d'água e neblina de óleo, deixa a retorta logo abaixo do topo, atravessando um conjunto coletor de partículas sólidas (pó) e líquidas (óleo pesado), constituido de uma bateria de ciclones e de um ou mais precipitadores eletrostáticos.

O fluxo gasoso contendo gases, vapores de hidrocarbonetos e vapor d'água é pressurizado e dividido em duas partes. Uma das partes é reciclada, subdividindo-se em duas correntes gasosas: uma delas constitui o reciclo frio (temperatura de 160°C) sendo inserida na base da retorta de um distribuidor de gases; a outra corrente atravessa o aquecedor de gás de processo, aquecendo-se a temperatura de 600°C - 700°C. A corrente de gases aquecidos é injetada atraves do distribuidor de gases situado no primeiro terço da altura do vaso.

A segunda parte do fluxo gasoso se dirige para a linha de descarga atravessando sucessivamente as seguintes secções:

1) A de recuperação de óleo leve, onde são coletadas, por condensação grande parte do vapor d'água e hidrocarbonetos a partir do pentano (C_5H_{12}) ;

2) A recuperação do enxofre, onde a quase totalidade do gás sulfídrico (H_2S), dióxido de enxofre (SO_2) e gás carbônico (CO_2) são retirados por um processo convencional, para em seguida sofrerem o tratamento do processo Claus Modificado, obtendo-se o enxofre;

3) Recuperação do GLP constituido de propano (C_3H_8) , propeno (C_3H_6) , butano (C_4H_{10}) e buteno (C_4H_8) . A mistura de gás remanescente, que constitui o gás combustível, é composta principalmente de hidrogênio (H_2) , metano (CH_4) , etano (C_2H_6) , eteno (C_2H_4) , monóxido de carbono (CO) e nitrogênio (N_2) .

As características físico-químicas principais do óleo obtido do xisto de Irati (S. Mateus do Sul) pelo processo Petrosix na unidade piloto, são mostradas na Tabela IV.3.

Tabela IV.3

Características físico-químicas do óleo da Formação de Irati (S. Mateus do Sul) - Unidade Piloto /57/.

Densidade em 15,6°C	. 19,6° A.P.I.
Diolefinas . ,	. 15% em peso
Corrosão, 3 h em 122°F	lâmina ASTM 4
Enxofre	1,06% em peso
Nitrogênio	. 0,86% em peso
Parafina (Holde)	. 0,02% em peso
Ponto de anilina	. 30°C
Ponto de fluidez	. ~ 3, 88° C
Viscosidade a 37,7°C	20,76 cts

4.5.4 - Usina de Xisto Comercial

Vencida com sucesso a etapa referente à fase de protótipo – UPI, a SIX projetou uma usina comercial, constituida basicamente pelas mesmas unidades da UPI, mas em escala maior, juntamente com uma bateria de 16 retortas (individualmente cada retorta é pouco maior que a utilizada na UPI). A produção e consumo desta usina estão indicados na Tabela IV.4. As características referentes ao gás de processo estão indicados na Tabela IV.5. Os dados destas duas tabelas são tomados como base para os cálculos desenvolvidos no próximo capítulo.

Tabela IV.5

Características do gás de processo ou gás de recicio aquecido. (dados gentilmente cedidos pela S.I.X. Curitiba)

Temp. do gás de processo na entrada da caldeira	160°C
Pressão do gás de processo	3 atm
Calor específico médio do gás de processo na temperatura e pressão	
acima	1,926,0 J/kg°C
Taxa média de fluidez do gás de processo	\sim 700 kg/s

Tabela IV.4

Cálculo Preliminar do Percentual de Energia Consumido em uma Usina Industrial de Xisto com Capacidade de 112.000 ton Métricas por dia (Dados gentilmente cedidos pela S.I.X., Curitiba)

Produtos	Cálculo (rendimento de óleo = 90% s/E.F.)	Energia	
		10 ⁶ kcal/dia	MW
1. Produção		× 0,0484606	1
1.1 Óleo composto	7.786,0 m ³ /d x 920,0 kg/m ³ x 10.200,0 kcal/kg	73063,8	3540,7
1.2 G.L.P.	480,0 t/d x 1000 kg/t x 11.592,0 kcal/kg	5564,2	269,6
1.3 NAFTA leve	461,0 m ³ /d x 630,9 kg/m ³ x 11.706,0 kcal/kg	3404,6	165,0
1.4 Gás combustível	1450,0 t/d x 1000 kg/t x 7.040,0 kcal/kg	10208,0	494,7
1.5 Enxofre	(890,0 t/d × 855 Cr\$/t ÷ 0,07 Cr\$/KWh) × 860 kcal/KWh	9348,8	45 3,0
TOTAL			4923,0
2. Consumo			
2.1 Öleo comb. p/ vapor	686,0 m ³ /d x 920,0 kg/m ³ x 10.200,0 kcal/kg	6437,4	312,0
2.2 Óleo comb. p/ aquec.	514,0 m ³ /d x 920,0 kg/m ³ x 10.200,0 kcal/kg	4823,4	soma 728,4
2.3 Gás comb. p/ aquec.	todo gás produzido será consumido	10208,0	
2.4 Energia elétrica	220.000,0 KWh/h x 24 h/d x 860 kcal/KWh x 3,3	14985,0	726,18
2.5 Óleo diesel	$89.04 \text{ m}^3/\text{d} \times 850 \text{ kg/m}^3 \times 11.000 \text{ kca}/\text{kg}$	832.5	40.34

Condições do vapor: massa = 388,5 ton/h; temperatura: \sim 320°C; pressão: 100 - 400 psi.

Percentual de energia comsumido = 36,7%.

5 - OTIMIZAÇÃO TERMODINÂMICA DO COMPLEXO INDUSTRIAL REATOR NUCLEAR PR-3000 - USINA DE XISTO COMERCIAL

5.1 - Considerações Gerais

Dentre os fatores principais que levaram a criação de reatores de alta temperatura, o que mais se destaca é a possibilidade da central nuclear fornecer grandes quantidades de calor em elevadas temperaturas (T ~ 700°C), diretamente para processos físico-químicos

Focalizando somente o reator nuclear, esse fator implica numa melhoria do rendimento energético do conjunto, porque quase todo calor residual descartado peia central nuclear para o meio ambiente, tem sua origem no sistema de produção de eletricidade que consome somente uma parte de calor produzido pelo reator. A eficiência dos trocadores de calor, no qual é transferido o restante do calor produzido pelo reator para usos que não o de produção de eletricidade, é bastante elevada, podendo atingir níveis acima de 95%

Conforme foi visto no capítulo anterior, da energia total requarida na operação de uma Usina Comercial de Xisto, cerca de 56% corresponde ao calor com temperatura de 700°C.

Tendo em vista esta alta porcentagem de calor requerido na operação de uma U.C.X., torna-se interessante investigar a possibilidade de se acoplar o reator nuclear PR-3000 a uma U.C.X., conforme está ilustrado na Figura 5.1

Figura 5.1 - Acoplamento reator nuclear PR 300 com usina de xisto.

Entretanto, a energia disponível pelo reator PR-3000 é superior à total requisitada pela U.C.X., conforme o dimensionamento atualmente adotado, já descrito no capítulo anterior. Isto implica que a central nuclear escolhida poderá alimentar uma usina de xisto F vêzes maior.

Face ao caráter modular da UCX esta extrapolação linear da capacidade desta usina torna-se perfeitamente viável, supondo-se não haver objeções de ordem econômica impostas pelas reservas do xisto na jazida local. Para tanto, aumentar se-ia o número de unidades individuais de processamento, isto é, o número de retortas, sem no entanto, alterar as suas dimensões e características físicas já otimizadas. Da mesma forma, a nova usina de xisto teria o seu consumo e produção multiplicadas pelo mesmo fator F.

5.2 - Tipos de Fluxogramas: Possibilidade e Problemas Envolvidos

Existem inúmeras maneiras de se acoplar os dois circuitos básicos do reator (cricuito primário e de vapor), com o circuito do gás de processo da U.C.X. Surge então o problema relativo à colocação de um circuito intermediário (C.I.), posicionado entre o circuito primário do reator e os outros dois circuitos.

Sob o ponto de vista de segurança nuclear, de uma maneira geral, é recomendado a utilização deste circuito intermediário de modo que a central nuclear se localie suficientemente distante da instalação industrial a ser acoplada⁽²⁷⁾

Entretanto, na gaseificação do carvão, tanto nos projetos desenvolvidos em Jülich⁽⁴⁰⁾ (Figura 3.2) como nos E.U.A⁽³⁰⁾, não se utiliza o C.I. e os trocadores de calor e geradores de vapor são dispostos em um único bloco. A instalação de um C.I., além de provocar perdas de energia, tem ainda a desvantagem de possuir um custo elevado.

Sob o ponto de vista da dispersão da radiação na atmosfera, uma pequena vantagem pode ser notada no caso de acoplamento próximo entre o PR-3000 e a U.C.X. Os elementos radioativos que por ventura venham a ser lançados na atmosfera (1, Xe, Kr, voláteis, etc.) unem-se aos hidrocarbonetos lançados pela U.C.X, precipitando-se no solo, dentro da área de segurança, diminuindo-se a distância percorrida por tais elementos radioativos.

No diagrama da Figura 5.2 é apresentada várias possibilidades de acoplamento entre a usina nuclear e a U.C.X., sendo-o caso <u>a</u> com circuito intermediário.

5.3 - Fluxograma Escolhido para os Cálculos Termodinâmicos

Dos fluxogramas apresentados na Figura 5.2 foi esscolhido o caso C, dado a sua simplicidade, envolvendo somente dois trocadores de calor. Este fluxograma, sem o C.I., é constituido basicamente por três ciclos:

- 1) Circuito primário do reator nuclear (ciclo do gás Hélio);
- 2) Circuito secundário do reator (ciclo de vapor);
- 3) Circuito do gás de processo (ciclo do gás de reciclo quente da usina de xisto).

5.3.1 - Aspectos Gerais sobre os Três Ciclos

5.3.1.1 - Circuito Primário do Reator PR-3000

Neste ciclo, o gás Hélio sai do núcleo do reator na temperatura de 950° (= Th_1), cede energia térmica no trocador de calor I (T C I.) para o gás de processo, elevando a sua temperatura para Th_2 (a ser determinada); depois, o gás Hélio se dirige ao gerador de vapor (GV). O Hélio deixa o G.V. na temperatura de 250°C (= Th_3), penetrando em seguida no caroço do reator completando-se o ciclo. As características operacionais deste circuito estão indicadas nas Tabelas III.3, III.4, III.5 e III.7 do Capítulo 3.

5.3.1.2 - Circuito do Gés de Processo (Usina de Xisto Acoplada - U.X.A.)

A única diferença entre o ciclo aqui considerado do gás de processo, e o ciclo utilizado na U.C.X. (Cap.4) é que, ao invés de caldeira, tem-se o trocador de Calor I, onde o gás de reciclo quente

Figura 5.2 - Possibilidades de acoplamento entre a usina de xisto e o reator nuclear (PR 3000). (obs · C = circulador de helio, B = bomba, CO = condensador, T = turbina

recebe calor, entrando na temperatura de 160° C e saindo com temperatura de 700 C Os dados principais para este ciclo estão indicando no Capítulo 4 (Tabela IV.4 e IV.5), à exceção da produção e consumo da usina de xisto que, de acordo com o modelo adotado no início deste Capítulo, são multiplicados pelo fator F (F > 1).

5.3.1.3 -- Ciclo de Vapor

O vapor é fornecido à usina de xisto nas condições de temperatura e pressão especificadas na Tabela IV.5; a massa de vapor e a potência elétrica são correspondentes a F vézes os valores apresentados na Tabela IV.5, adicionados a uma parcela de energia elétrica consumida pela própria central ouclear (circuito primário e secundário). Este ciclo será estudado com maiores detalhes no (ten. 5.4.3)

5.4 -- Equacionamento do Problema

5.4.1 - Introdução. Especificação do Problema

O problema se resume em dimensionar uma usina de xisto, semelhante à U.C.X. descuta na Capítulo 4. (*item* 4.5.3) para sei acoptado ao reator PR-3000 de 2980,8 MW³ de modo a se obter um rendimento termico máximo do sistema dentro das condições de contorno estabelecidas. A escolha de propor uma alteração da U.C.X., ao invés de reator, foi feita dado o caráter modular daquela usina e a economia de escala do reator nuclear que, via de regra, é mais económico para majores porte.

Considere-se, então, o diagrama C da Figura 5.2 desenhado com majores detalhes, conferior indicado na Figura 5.3. Neste diagrama, torna-se necessário determinais

al Da U.X. N. -

Determinação do Fator de inultiplicação <u>E</u>, o qual corresponde ao comero de vezes que a V.C. deve ser multiplicada para consumil toda energia disponível na central nuclear PK 3000.

- b) Do circuito primário do reator:
 - b.1) Determinação do calor trocado no Trocador de Calor L (= ΩL) por unidade de tempo.
 - b.2) Determinação do calor trocado no Gerador de Vapor (LOGV) por unidade de tempo.
 - b.3) Determinação da temperatura de saída do gás Hélio do T.I.C. (TH₃)
- c) Do circuito do gás de reciclo quente da usina de xisto:
 - c.1) Determinação da massa de gás aquecida (= mg) por unidade de tempo
 - c.2) Determinação da massa de vapor requisitada na UIX A. (< m-) por unidade de tempo.
- d) Do ciclo de vapor:
 - (d.1) Escolha da pressão do vapor no ponto 1 (= P(1)).
 - (L2) Determinação da temperatura de vapor no ponto E (T(1))
 - d.3) Determinação da pressão de extração de vapor para o aquecedor regenerativo no ponto 4 (= P(4)).

Figura 5.3 - Fluxograma simplificado do complexo nuclear industrial PR 3000 - U.X.A.

44

- d.4) Determinação das funções de estado do fluido nos pontos assinalados no diagrama da Figura 5.3
- d.5) Determinação dos demais parâmetros do ciclo, tais como rendimento, potência elétrica produzida, etc

O ciclo de vapor (Ciclo de Rankine) é apresentado esquematicamente no diagrama TS da Figura 5.4. Como são feitas 2 extrações na turbina a massa de vapor que percorre os vários componentes do circuito não é a mesma. O diagrama TS da Figura 5.4 e outros, usados no decorrer deste Capítulo servem para ilustrar o estado do fluido nos diversos pontos do sistema

Figura 5.4 - Diagrama TS para o ciclo de vapor de Rankine do complexo PR 3000 - U X.A

5.4.2 - Dados Disnort(ve).

Os dados disponíveis para a resolução das questões levantadas no item anterior são enunciados a seguir:

- I) Dados conhecidos do circuito primário do reator:
- 1.1) Potência disponível do reator Qr = 2980,8 MW,
- 1.2) Temperatura de saída do Hélio do núcleo do reator Th₁ = 950° C.
- 1.3) Temperatura de entrada do Hélio no núcleo do reator Th₃ = 250° C.

1.4) Taxa de fluidez média do Hélio — m _h 820,0 kg/seg.
I.5) Calor específico médio do Hélio nos intervalos de temperatura 100°C – 1000°C, e pressão 10 – 100 bar Cph = 5193,0J/kg°C.
1.6) Potência elétrica consumida pela central nuclear em instalações de apoio ⁽⁴⁾ – Er = 15MWe.
 Usina de Xisto Comercial (antes da extrapolação):
II.1) Processamento
II.2) Produção d∉ óleo ~ 50.000 barris/d
II.3) Consumo
(1.3.1) Calor de retortagem $-\dot{Q}I_1 = 728,4 \text{ MW}_t$
II.3.2) Vapor: temperatura de 608°F — 609°F; pressão de 70 — 350 psi;; ta×a:m _x = 388,5 ton/h
11.3.3)Potência elétrica — $E_1 = 220,0$ MWe
II.4) Gás de reciclo:
II.4.1) Temperatura de entrada no trocador de calor I Tg ₁ = 160° C
11.4.2) Temperatura de saída no trocador de calor 1 Tg ₂ = 700°C
II.4.3) Calor específico médio Cpg = 1926 J/kg°C

11.4.4) Pressão do gás - Pg = 3 atm.

II.4.5) Taxa de gás de reciclo $-\dot{m}_{g1} = 2521,3 \text{ ton/h}.$

5.4.3 - Balanço Térmico do Complexo PR-3000 - U.X.A.

5.4.3.1 - Usina de Xisto Acoplada. Ciclo do Gás de Processo

Seguindo o modelo adotado para a usina de xisto comercial a ser acoplada ao reator PR-3000 (introdução deste Capítulo), a nova usina comercial de xisto teria as seguintes características:

i) Processamento P = F x 112.000 ton/d.

ii) Produção de óleo F x 50.000 barris/d.

iii) Consumo.

.

iii.1) Calor de retortagem $\dot{\Omega}I_2 = \dot{\Omega}I_1 \times F MW_t$

iii.2) Vapor nas mesmas condições de pressão e temperatura da U.C.X. de vapor — ḿ₃ ≂ F x ḿ_xton/h

iii.3) Potência elétrica $E_2 = F \times E_1$ MWe

46

iiii) Gás de recicio:

iiii.1) Mesmas condições de pressão e temperatura da U.C.X.

iiii.2) Taxa de gás ... $\dot{m}g = F \times \dot{m}_{g1}$ ton/h

Feita estas considerações, obtém-se as relações a seguir.

5.4.3.2 - Relações Decorrentes do Circuito Primário do Restor (Figura 5.5)

1) Calor de retortagem

$$Ql_2 = F \times Ql_1 = m_h \times Cphx (Th_1 - Th_2)$$

2) Gerador de vapor

$$\dot{Q}gv = m_h x Cph x (Th_2 - Th_3)$$

3) Balanço de calor do circuito primário do reator

$$Qr = \frac{F \times QI_1}{K_1} + \frac{Qgv}{K_2}$$

Sendo K₁ e K₂ eficiência do trocador de calor I e gerador de vapor, respectivamente. Adota-se neste circuito a condição de que K₁ = K₂ = 1.

Figura 5.5 - Fluxograma simplificado do circuito primário do reator.

5.4.4 - Ciclo do Vapor

5.4.4.1 — Considerações Gerais

Ao se propor um determinado ciclo de vapor, estabelecendo as condições iniciais do vapor, número de aquecedores regenerativos etc., deve-se analisar a influência que tais condições tem sobre as características gerais do ciclo de potência. Por características gerais, entende-se aqui, a confiabilidade da instalação, eficiência, custo inicial, facilidade de reparos, custo de manutenção etc. Num projeto completo, deve-se chegar a um valor ótimo entre os parâmetros interligados concernentes à condições iniciais do vapor, número de aquecedores regenerativos, colocação (ou não) de reaquecimento, etc., sobre a economia global da instalação. O fator determinante na esco,ha de um determinado ciclo de vapor é a economia da instalação.

Neste trabalho, pretende-se obter as condições ótimas em têrmos de eficiência energética do complexo nuclear-industrial sem entrar em considerações de caráter econômico.

A eficiência total do complexo PR-3000 - U.X.A. é função de três fatores principais:

- 1) A eficiência dos trocadores de calor do circuito primário do reator (K1 e K2);
- 2) O rendimento do processo Petrosix;
- O rendimento do ciclo de vapor.

Entretanto, desde que as eficiências $K_1 \in K_2$ são tomadas iguais à unidade, e o rendimento da usina de xisto em si (U.X.A.) é suposto ser igual ao da U.C.X. (pois não se pretende alterar o processo Petrosix), a eficiência global do complexo será máxima quando a eficiência do ciclo de vapor também estiver maximizada.

Uma vez estudado, de uma maneira geral, o problema energético do complexo, está-se em condições de iniciar o estudo econômico do mesmo, o qual foge aos objetivos deste trabalho. A economia do conjunto deve considerar as características da jazida de xisto, a existência de infraestrutura externa e outras condições e fatores externos que dependem de cada complexo em particular.

5.4.4.2 - Nomenclatura

A nomenclatura usada no decorrer dos cálculos é a seguinte:

- a) As funções de estado em cada ponto serão designadas por H(x), S(x), T(x), P(x), correspondendo respectivamente a entalpia, entropia, temperatura e pressão no ponto x, indicado entre parênteses;
- b) A massa total de vapor por unidade de tempo = m.
- c) A massa de vapor a ser extraído no ponto 4 por unidade de tempo = m_4 .
- d) Rendimento calculado do ciclo de vapor = n_.
- e) Entalpia do vapor saturado na linha de pressão do ponto x = HG(x).
- f) Entalpia do líquido saturado na linha de pressão do ponto x = HF(x).
- g) Entalpia do fluido na linha de pressão do ponto x, proveniente de uma expansão isoentrópica do vapor = HL(x).

48

h) Rendimento de referência do ciclo de vapor = n,.

5.4.4.3 - Escolha de Alguns Parâmetros do Ciclo do Vapor: Condições de Contorno

5.4.4.3.1 - Aquecedor Regenerativo

Conforme nos mostra o diagrama da Figura 5.3, o ciclo inicial escolhido para cálculo em somente um aquecedor regenerativo (de superfície).

Quanto maior o número de aquecedores regenerativos, maior seria a eficiência térmica da instalação. Para ilustrar esse fato, a curva característica que relaciona a porcentagem P_t do ganho teórico G_t com o número de aquecedores é mostrado na Figura 5.6. Por ganho teórico entende-se o ganho máximo em eficiência da instalação quando equipada com infinito número de aquecedores, em comparação com a mesma instalação, sem aquecedores. A curva da Figura 5.6 corresponde a um ciclo de potência com as seguintes características: os aquecedores são de mistura, o aumento da entalpia é constante (entre um aquecedor, e o mais próximo) o trabalho da bomba e a queda de pressão do vapor entre a saída da turbina e entrada do aquecedor é desprezível. A consideração de tais fatores provocaria uma diminuição da eficiência do sistema.

Figura 5.6 - Percentagem do ganho teórico em função do nº de aquecedores.

Por outro lado aumentando-se o número de aquecedores, além de dificultar a manutenção, eleva-se os custos de investimento de tal forma que a sua colocação pode tornar-se anti-econômica. Raramente os ciclos de potência utilizam mais do que cinco aquecedores regenerativos.

Para as pretenções deste trabalho adotou-se somente um aquecedor para servir como referencia de projeto.

5.4.4.3.2 - Resquecimento

O reaquecimento é usado quando se torna necessário melhorar o título do vapor nos últimos estágios da turbina, embora, secundariamente, aumente um pouco a eficiência térmica do ciclo. Como será mostrado mais tarde, pelos resultados (Cap.6), o sistema adotado dispensa o reaquecimento.

5.4.4.3.3 - Outras Condições de Contorno

Além das premissas estabelecidas anteriormente, são enumeradas a seguir outras condições de contorno:

1 - Temperatura da água de refrigeração no condensador (T_)

 $T_{a} = 20^{\circ}C = 68^{\circ}F$

2 -- Temperatura do fluído na saída da turbina (ponto 5) (via de regra, é tomada como sendo aproximadamente 10°F acima de T_x).

 $T(5) = 80^{\circ}F$

3 - Pressão do fluído na saída do último estágio da turbina (ponto 5)

P(5) = 0,5 psi

4 — Temperatura do vapor na saída do gerador de vapor (ponto 1) (toma-se, via de regra, aproximadamente 20°F a menos que a temperatura de entrada do Hélio no gerador de vapor).

 $T(1) = Th_2 - 20^{\circ}F$

5 - No intervalo entre o gerador de vapor e a turbina, admite-se uma queda de pressão de 3% e queda de temperatura de 1%.

P(1) = 1,03 P(2)

T(1) = 1,01 T(2)

6 - Título do vapor

Tit ≥ 0,90⁻

- 7 Comportamento ideal das bombas.
- 8 Queda de pressão e temperatura nula nas tubulações, salvo entre o gerador de vapor e turbina.
- 9 Eficiência do gerador de vapor.

 $K_1 = 100\%$

- 10 Não utiliza desaerador.
- 11 Energia gasta pelas bombas está inclusa na energia gusta pela central nuclear em instalações de apoio.

Er = 15 MWe

- 12 Vazamento é compensado na água de alimentação (ponto 8).
- 13 Comportamento ideal do condensador.

14 - Rendimento da turbina

Rt = 0,80

- 15 Proporção vapor/energia elétrica estabelecido pela U.X.A., mais o consumo da própria central nuclear (= Er).
- 16 Água de alimentação (ponto 8)

 $T(8) = 77^{\circ}F$ P(8) = 100 psi H(8) = 45 Btu/lbm

17 – Temperatura do líquido comprimido na saída do aquecedor regenerativo (regra geral) (ponto 11).

 $T(11) = T(10) - 10^{\circ}F$

18 - Temperatura e pressão do vapor que se dirige à usina de xisto (ponto 3)

 $608^{\circ}F \le T(3) \le 609^{\circ}F$

70 psi ≤ P(3) ≤ 350 psi

5.4.4.4 - Discussão Geral Sobre Alguns Pontos do Ciclo de Vapor

1 - Condições iniciais do vapor.

Torna-se necessário determinar as condições iniciais de pressão (a temperatura depende do circuito primário do reator) do vapor (ponto 1) a fim de se obter um rendimento térmico máximo, dentro das condições de contorno estabelecidas. Para isso, a pressão P(1) será escolhida entre os extremos de 1000 psi e 3000 psi, tomando-a em intervalos constantes de 250 psi. Uma vez escolhida a região cujo rendimento térmico é máximo, adotar-se-á um novo intervalo (menor que 250 psi) denti o da mesma região. As variações feitas estão indicadas no ítem 5.4.5.

2 - Expansão do vapor na turbina.

O vapor se expande na turbina realizando trabalho mecânico. A irreversibilidade da expansão torna-a não isoentrópica (Figura 5.7) e é tomada em conta pelo rendimento da turbina (\approx Rt)

A entalpia do vapor no ponto 5 é dada por:

 $H(5) = HL(5) \times Rt + (1 - Rt) \times H(2)$

O título do vapor é definido como:

$$Tit = \frac{H(5) - HF(5)}{HG(5) - HF(5)}$$

3 - Extração de vapor para a usina de xisto (ponto 3)

O vapor requisitado no projeto da U.X.A. deve ter temperatura no intervalo de $608^{\circ}F \leq T(3) \leq 609^{\circ}F$ e pressão no intervalo de 70 psi $\leq P(3) \leq 350$ psi.

Nota-se no diagrama TS da Figura 5.8 que, uma vez estabelecida a pressão P(3), a temperatura T(3) estará automaticamente determinada na intersecção da linha de P(3) com a linha de expansão do vapor na turbina (ponto 2 – ponto 5). Assim, em todos os casos considerados para P(1), varia-se a pressão P(3), de 1 em 1 psi, a partir de 70 psi, até que se consiga temperatura T(3) no intervalo desejado.

Figura 5.7 - Expansão do vapor na turbina.

Figura 5.8 - Diagrama TS indicando a extração de vapor para a usina de xisto.

4 --- Escolha da Pressão de Extração do Vapor para o Aquecedor Regenerativo (ponto 4)

Dos vários procedimentos existentes para se escolher a pressão de extração de modo a se obter um melhor rendimento térmico para o ciclo da água de alimentação, T(11), é determinada pela fórmula empírica^(4.1):

$$\frac{(40 + 8 \text{ n})}{100} \times (1 \text{ sat} - 1 \text{ cond}),$$

onde

- Taa Temperatura da água de alimentação, isto é, a temperatura que o líquido deixa o ultimo aquecedor regenerativo
- Teond temperatura do Líquido na saída do condensador
- Tsat temperatura de saturação correspondente a pressão de entrada na turbina
 - n número de aquecedores regenerativos

Para o problema em questão, n.º. 1, e a pressão do vapor na entrada da turbina, P(2), será variada em intervalos regulares de 1000 a 3000 psi (Eigura 5.9).

Figura 5.9 - Diagrama TS mostrando a extração de vapor para o aquecedor regenerativo.

Desde que P(2) ≅ P(1), então:

a) Para P(1) = 1000 psi, tem se:

Tsat -544.6° F; Tcond -80° F; n 1. Substituindo estes valores na fórmula anterior, obtém-se: Taa $-T(11) - 303.0^{\circ}$ F. Conforme foi estabelecido nas condições de contorno, T(11) = T(10) - 10. Portanto, $T(10) = 313.0^{\circ}$ F, onde, T(10) = -temperatura de saturação correspondente a linha de pressão de extração (= P(4)). Portanto, P(4) = 81 psi.

b) Para P(1) = 3000 psi, tem-se,

Tsat $= 695,4^{\circ}$ F; Tcond $= T(5) = 80^{\circ}$ F; n = 1. Substituindo estas grandezas na equação anterior, obtém-se Taa $= T(11) = 375,4^{\circ}$ F. Segundo as condições de contorno, T(11) = T(10) = 10, e portanto, $T(10) = 385,4^{\circ}$ F. A pressão correspondente a esta temperatura de saturação é P(4) = 209,0 psi.

Convém ressaltar que este método não leva em consideração uma extração de vapor no ponto 3 para a usina de xisto. Assim, usou-se de pressões de extração que representavam uma ordem de grandeza esperada, entre dois extremos. Escolheu-se, portanto, o seguinte intervalo inicial para a variação da pressão de extração no ponto 4:

 $10 \text{ psi} \leq P(4) \leq 300 \text{ psi}$

5 - Trabalho realizado pelas bombas de água.

Existem duas bombas d'água no circuito. A primeira delas eleva a pressão do líquido de 0,5 psi (ponto 6, P(6)) até 100 psi (ponto 7, P(7)). Nesse intervalo de pressão, o volume específico varia muito ponto (52).

volume em 0,5 $psi = 0,01608 pes^3 / lbm$

volume em 1000 psi = $0,0177 \text{ pes}^3/\text{lbm}$

Considera-se o volume específico constante nesse intervalo, e igual à média dos valores acima, ou seja v = 0,017 pes³/lbm. O acréscimo na entalpia do líquido entre os pontos 6 e 7 é dado por:

$$\Delta H = vx(P(7) - P(6)) \times f_{g} = 0.017 \text{ pes}^{3}/\text{lbm}(100 - 0.5)\text{lbf/pol}^{2}.0.18594 \frac{\text{pol}^{2} \times \text{Btu}}{1\text{lbf} \times \text{pes}^{3}}$$

sendo $f_a = \text{fator de correção de unidade = 0,18504 pol^2 x Btu/lbf x pes^3$

 $\Delta H = 0.31 \text{ Btu/lbm}.$

A segunda bomba, localizada entre os pontos 11 e 12, eleva a pressão do líquido comprimido de 100 psi para a pressão P(1) considerada, que varia de 1000 psi a 3000 psi. No gráfico do volume em função da pressão⁽⁵²⁾ dividiu-se a área formada entre a curva e o eixo das abcissas (pressões) em 3 regiões (Figura 5.10).

a) Primeira região: 100 psi ≤ P ≤ 300 psi

Nesta região, a dependência entre v e P é linear, obedecendo a equação da reta

 $v = 0,000006 \times P + 0,0171$

O aumento da ontalpia ontre os pontos 11 e 12, nesta região, será dada pela área formada entre a reta e o eixo das pressões

$$\Delta H_1 = E_{\eta} \neq (0.000003 + P(1)^2 + 0.9171 + P(1)^2 + 1.74)$$

ti) Segunda região 300 psi < P < 1800 psi

Também necta cogião, o volume é uma funcão aproximadamente lunear de la o dorte po

y 382 × 10 " × P(1) + 0.01773

O sumento da entalpia entre os pontos 11 e 12 nesta região é dada pela área formació entre esta reta silo eixo das abcissas.

$$\Delta H_{2} = f_{g} \times (1,935,10^{6} \times P(1)^{7} + 0.01773 \times P(1) - 5.49425$$

c) Terceira região -1800 psi ≤ P ≤ 3000 psi.

Nesta região, ajustou se uma curva exponencial aos pontos experimeno 🦶

Tal ajuste foi feito na máquina calculadora HP-25, segundo o inétodo dos minimos madrados através de um programa pertencente ao catálogo dessa máquina. Chegou se ao seguinte resultado

v ap^b, onde a : 0,014775 e b : 0.000278

A área formada entre a curva exponencial e o eixo das pressões correspondente ao aumento da entalpia do Hquido entre os pontos 11 e 12, nesta região

$$\Delta H_3 = a/b \times (e^{b \times P_1 T}) = 1.64938) \times f_3$$

De acordo com as condições impostas ao ciclo do vapor, a seguir são obtidas as relações listadas em continuidade com as obtidas para os outros dois ciclos (Item 5.4.3.1).

(4) Do gerador de vapor.

 $\dot{Q}gv = \dot{m} x (H(1) - H(12))$

(5) Temperatura do vapor no ponto 1

 $T(1) = Th_2 - 20,0^{\circ}F$

(6) Potência elétrica produzida

$$E = \dot{m}_{t} \times (H(2) - H(3)) + (\dot{m}_{t} - F \times \dot{m}_{x}) \times (H(3) - H(4)) + (\dot{m}_{t} - F \times \dot{m}_{t} - \dot{m}_{t}) \times (H(4) - H(5))$$

(7) Ponto 9

 $(\dot{m}_{r} - Fx\dot{m}_{v}) \times H(7) + Fx\dot{m}_{v}H(8) = \dot{m}_{r} \times H(9)$

(8) Aquecedor regenerativo

 $in_x(H(11)-H(9)) = in_4 \times (H(4) - H(10))$

(9) Rendimento do cilco de vapor

$$= \frac{F_{xm_x} + H(3) + F_x E_1 + E_1}{O_{av}}$$

(10) Temperatura do ponto 11

$$T(11) = T(10) - 10^{\circ}F$$

5.5 - Procedimento Numérico

5.5.1 - Método de Cálculo

n

O conjunto de dez equações decorrentes dos três ciclos básicos, constitue um sistema no qual tem-se um maior número de incógnitas do que equações independentes.

Por outro lado analisando-se detalhadamente as equações envolvidas nos três ciclos, verifica-se que o método iterativo oferece o meio mais conveniente para resolver tal sistema.

Assim, admitindo-se um valor inicial para F, imediatamente ficam determinadas as incógnitas do circuito primário do reator, do ciclo do gás de processo e a produção e consumo da Usina de Xisto Acoplada. Da mesma forma obtém-se o valor da potência elétrica total requisitada pelo complexo $(E = E_1 \times F + E_1)$, e o próprio rendimento do ciclo de vapor (Equação 9, ítem 4.4.5) sem, no entanto, ter resolvido completamente o ciclo de vapor. O rendimento do ciclo de vapor calculado desta maneira é chamado de "rendimento de referência", e é designado por n_a.

Mas, para o mesmo valor de F admitido, da resolução do ciclo de vapor obtem-se valores para a potência elétrica total fornecida e o rendimento que não coincidem, necessariamente, com os valores anteriormente determinados. Essa coincidência deve existir para o ponto de convergência. Portanto, pode-se tomar um desses dois parâmetros como indicador do processo iterativo. O rendimento calculado através da resolução do ciclo de vapor é chamado de "rendimento calculado", e é designado por n_.

Varia-se, então o valor de F, até que se encontre o maior valor dele para o qual o sistema das equações decorrentes dos três ciclos básicos seja satisfeito. Ao mesmo tempo, c'etermina-se as funções de estado dos pontos do ciclo de vapor que, obedecendo as condições de contôrno impostas, impliquem num rendimento térmico máximo.

No ponto de convergência, onde o rendimento térmico é máximo, o balanço líquido total de energia consumido pela U.X.A. pode ser representado pelo fator Pc, onde:

$$\begin{array}{c} E_{c} \\ P_{c} = \frac{E_{c}}{2} \\ E_{p} \end{array} x 100, sendo$$

Ec = energia consumida. Corresponde à potência disponível do reator PR-3000 (igual a 2980,8 MW)

Ep = energia latente produzida, representada pelos derivados produzidos pela U.X.A.

5.5.2 - O Programa Digital

Um programa digital foi escrito para proceder-se ao método iterativo proposto, variando-se o valor do parâmetro F, a pressão de vapor no ponto 1 (= P(1)), a pressão de extração no ponto 4 (= P(4)), e utilizando as relações provenientes dos 3 ciclos, bem como as condições de contorno estabelecidas.

O programa digital, escrito em linguagem Fortran IV, foi processado no computador IBM/370/155 do I.E.A.

Os dados de entrada para o programa estão indicados no lítem 5.4.2. e estão relacionados nos cartões de comentário do programa no Apêndice 3.

O programa foi processado quatro vêzes, variando-se as condições abaixo relacionadas.

1) Primeiro processamento:

Foram tomadas as seguintes variações para F, P(1) e P(4):

a) variação para F: 1,80 a 1,95; passo 0,05

- b) variação para P(1): 1000 a 3000 psi; passo 250 psi
- c) variação para P(4): 10 a 300 psi; passo 10 psi.
- 2) Segundo processamento:

Dos resultados obtidos no processamento anterior, determinou-se uma nova variação para F e P(4), mantendo-se constantes as condições de P(1):

a) variação para F: 1,93 a 1,96; passo 0,01

b) variação para P(4): 30 a 50 psi; passo 10 psi

3) Terceiro processamento:

Mantendo-se as condições de P(4) do 2º processamento, variou-se F e P(1):

- a) variação para F: 1,950 a 1,955; passo 0,001
- b) variação para P(1): 2100 a 2700 psi, passo 50 psi
- 4) Quarto processamento:

Foram feitos cálculos para as seguintes variações:

- a) variação para F: 1,950 a 1,952; passo 0,001
- b) variação para P(1): 2255 a 2500 psi; passo 5 psi
- c) variação para P(4): 30 a 50 psi; passo 10 psi.

5.5.3 - Diagrama Indicando a Sequência dos Cálculos (Figura 5.11 e5.12)

Neste ítem é apresentado a sequência dos cálculos executados pelo programa digital, que se encontra no Apêndice 3.

Cabe salientar algumas observações:

- 1) As sub-rotinas utilizadas estão descritas com maiores detalhes no Apéndice 2.
- 2) A diferença entre o rendimento calculado através do valor F adotado (η_t) e o cálculo atraves do ciclo (η_c) é designado por $\Delta \eta$.
- Para melhor compreensão, no diagrama de blocos, são tomadas as variações para F. P(1) e P(4) correspondente ao 1º processamento do programa digital.

Figura 5.11 - Diagrama indicando a sequência de cálculos efetuados pelo programa digital.

Figura 5.12 — Diagrama indicando a sequência de cálculos efetuados pelo programa digital.

6 - RESULTADOS, CONCLUSÕES E COMENTÁRIOS FINAIS

6.1 - Introdução

Os resultados numéricos obtidos através de vários processamentos do programa digital ordenados em gráficos e tabelas, para serem analisados em seguida.

6.2 - Escolha da Pressão de Extração do Vapor para o Aquecedor (Ponto 4)

De acordo com os gráficos mostrados na Figura 6.1 o rendimento do ciclo de potencia (n_c) atinge um patamar de valores máximos para pressões de extração, P(4), em torno de 30 psi e pressões iniciais do vapor, P(1), abaixo de aproximadamente 250 psi.

Para pressões P(1) acima de 2500 psi o ponto máximo desloca-se para P(4) = 40 psi. Note-se que, em praticamente todos os casos, o rendimento n_c^{-} é aproximadamente constante a partir do ponto máximo, para em seguida decrescer suavemente com o aumento de P(4).

Para os cálculos que se seguem, tomou-se 3 valores para P(4): 30 psi, 40 psi, 50 psi. A pressão de extração P(4) = 40 psi, está praticamente no ponto médio do patamar, sendo essa pressão escolhida para a obtenção dos resultados finais. Entretanto, deve-se ressaltar que, na prática, depois de obtido o intervalo de pressões de extração no qual o rendimento n_c do ciclo é máximo e aproximadamente constante, deve-se conseguir um fabricante de turbinas que possa fornece-las com pressões de extração dentro do intervalo estabelecido teoricamente. A escolha final do ponto de operação dependerá, portanto, do fornecedor.

6.3 - Obtenção dos Pontos de Convergência

Dos resultados obtidos através da primeira iteração do programa digital, foram feitos os gráficos mostrados na Figura 6.2.

Note-se que em todos os gráficos de rendimento versus P(1), o rendimento n_t de referência (curvas intermitentes) decresce a medida que P(1) aumenta. Este comportamento da curva torna-se claro se analisarmos a relação de onde provém n_t (relação n? 9), ou seja:

$$n_{t} = \frac{F \times E_{1} + Er + F \times m_{\chi} \times H(3)}{Q_{qv}}$$

Para um mesmo valor de F, a medida que se aumenta a pressão P(1), diminui-se o valor da entalpia H(3), porque a temperatura do vapor (Ponto 3, T(3) = 608° F) que se dirige à usina de xisto é fixa. Isto pode ser visto esquematicamente no diagrama TS da Figura 6.5.

Desses gráficos conclui-se que os pontos de convergência devem ocorrer para F maior que 1,900 e, em torno de F = 1,950. Deste modo, a segunda iteração do programa foi realizada para F = 1,940, F = 1,950 e F = 1,960. Os resultados estão nos gráficos das Figuras 6.3 e 6.4.

Agrupando-se os parâmetros dos pontos de convergência obtidos através dos gráficos das Figuras 6.3 e 6.4, chega-se a Tabela VI.1.

Através da Tabela VI.1, nota-se claramente que aumentando-se o valor de F, cresce o rendimento do ciclo de vapor e a pressão P(1), enquanto decresce o título do vapor. O maior valor de F(e, portanto maior rendimento para o ciclo de potência) está entre 1,950 e 1,960, com título de vapor

Figura 6.1 - Rendimento calculado do cicio de vapor em função da pressão de extração P(4) para o aquecimento regenerativo.

Figura 6.2 - Rendimento do ciclo de vapor em função da pressão P(1) do vapor. P(4) = 40 psi (Rend. - referen.; - -) Rend. calculado: _____),

Figura 6.4 – Título do vapor em função da pressão p(1). (P(4) = 40 psi).

Figura 6.5 — Variação de H(3) aumentando-se P(1), para T(3) fixo.

Tabela VI.1

Dados dos Pontos de Convergência Correspondentes às Curvas das Figuras 6.3 e 6.4 (2ª Iteração do Programa Digital)

F	Rendimento %	Pressão P(1) _{psi}	Título do Vapor
1,930	68,85	1383	0,934
1,940	69,40	1750	0,918
1,950	69,90	2250	0,901
1,960	70,35	2833	0,884
clentro das condições impostas (Tit. - 0,900). Procedeu-se, então, à terceira iteração do programa digital, com as seguintes variações para F + P(1): 1,950 a 1,955, com passo de 0,001, e 2200 psi a 2800 psi, com passo de 50 psi, respectivamente. Os resultados são mostrados nas Figuras 6.6 e 6.7.

Os pontos de convergência da Figura 6.6. e os títulos de vapor respectivos obtidos da Figura 6.7 são agrupados na Tabela VI.2.

Tabela VI.2

Dados dos Pontos de Convergência Correspondentes às Curvas das Figuras 6.4 e 6.6 (3ª Iteração do Programa Digital)

F	Rendimento %	Pressão P(1)	Título do Vapor
	~	ps i	
1,950	69,91	2260	0,9015
1,951	69,96	2310	0,9000
1.952	70,01	2370	0,8975
1.953	70,06	2430	0,8960
1.954	70.10	2490	0,8940
1.955	70.15	2550	0,8930

Dos valores mostrados na Tabela VI.2, concluiu-se que o resultado ótimo para o sistema deve ocorrer em torno de F = 1,951, onde o título do vapor corresponde ao mínimo aceito, ou seja Tit = 0,900.

Entretanto, procedeu-se a uma última iteração do programa digital para F = 1,950, 1,951, e 1,952, variando-se a pressão P(1) em intervalos menores, isto é, de 2250 psi a 2380 psi de 5 em 5 psi. Os ursultados estão indicados na Tabela VI.3.

Tabela VI.3

Dados do Ciclo de Vapor Referente a 4ª Iteração do Programa Digital . P(4) = 40 psi

F	Pressão P(1) psi	Rendimento de Referência n _t %	Rendimento Calculado n _c %	n _c - n _t %	Título do Vapor
	2250	69,92	69,91	- 0,01	0,902
	2255	69,91	69,91	0,0	0,901
1,950	2260	69,91	69,91	0,0	0,901
	2265	69,92	69,92	0,0	0,901
	2270	69,91	69,92	0,01	0,901
	2300	69,97	69,96	0,01	0,900
	2305	69,96	69,96	0,0	0,900
1,951	2310	69,96	69,96	0,0	0,900
	2315	69,96	69,96	0,0	0,900
	2320	69,96	69,96	0,0	0,899
	2325	69,96	69,97	0,01	0,899
	2360	70.02	70.01	- 0,01	0,898
j .	2365	70,01	70,01	0,0	0,898
1,952	2370	70,01	70,01	0,0	0,898
	2375	70,01	70.01	0.0	0,898
	2380	70,00	70,01	0,01	0,898

Figura 6.7 - Título do vapor em função da pressão P(1) (P(4) = 40 psi).

Da Tabela VI.3 conclui-se que o maior valor de F para o qual o título do vapor corresponde ao mínimo aceitável (=0,900) é de fato 1,951. Mas, tal valor do título ocorre para três valores de pressões no ponto 1: 2305 psi, 2310 psi e 2315 psi. Tomou-se o valor médio para o resultado finai, isto é, P(1) = 2310 psi.

6.4 - Resultados Finais

Os parámetros finais do ciclo de vapor, e da U.X.A. adaptados estão indicados nas Tabelas VI.4 e VI.5, respectivamente.

Em analogia à Tabela III.7, construiu-se a Tabela VI.6, agrupando-se os dados referentes aos Trocadores de Calos à se Gerador de Vapor do complexo nuclear-industrial PR-3000 - U.X.A.

Tabela VI.4

Dados Finais do Ciclo de Vapor do Complexo Nuclear Industrial PR-3000 ~ U.X.A.

Ponto	Estado	Taxa de	Pressão	Temperatura	Entalpia
	do	Fluidez			
	Fluido	Lbm/s	psi	°F	BTU/Lbm
1	Vapor super				
	aquec.	1131,5	2310,0	1121,3	1541,3
2	,,	1131,5	2242,7	1110,2	1536,2
3	"	464.2	273.0	608,2	1320,9
4	••	211.9	40.0	311,5	1192,5
5	Vapor	_ •-			
	saturado	455,4	0,5	79,6	991,2
6	Líquido		·		
	saturado	667,3	0,5	79,6	47,6
8	Líquido	•	·	·	
	comprim.	464,2	100,0	77,0	45,0
10	Vapor	•	•		
	saturado	1131,5	100.0	267,2	236,0
11	Líquido			- •-	
	comprim.	1131.5	100.0	257.2	225.8
12	Líquido			/-	•
•	comprim.	1131,5	2310,0	257,2	235,0
Título de	o Vapor				0,900
Rendime	nto				0,6996
Potência	elétrica				444,1
					MW

Tabela	VI.5
--------	------

Dados da Usina de Xisto acoplada ao Reator PR-3000

Processamento	218.500	ton/d
N ⁰ de retortas	31	
Produtos:		
1. Öleo composto	15190,5	m³/d
2. G.L.P.	936,5	ton/d
3. Nafta leve	899,4	m³/d
4. Gás comhustível	2829,0	ton/d
5. Enxotre	1736,4	ton/d
Consumo:		
Taxa de calor para processo	1421,1	MW
Taxa de vapor (T = 608,2°F, P = 273 psi)	7 58	ton/h
Energia elétrica	429,2	MW
	21 028	
2980,8 ÷ (1,951 × 4923,0) × 100	31,03	%

Tabela VI.6

Dados dos Trocadores de Calor e Geradores de Vapor do Complexo PR-3000 - U.X.A.

Potência térmica do reator	2980,8 MW _t
Aumento de temperatura no cerne do reator	280 - 980°C
Queda de temperatura nos trocadores de calor	950 - 250°C
Taxa média de fluidez do Hélio	820 kg/s
Calor máximo fornecido no intervalo de alta temperatura: 950 - 616,3°C	1421,1 MW
Nº de trocadores de calor I	8
Calor máximo fornecido no intervalo de baixa temperatura: 616,3°C - 250°C Taxa de vapor produzido	1559,7 MW 1847,7 ton/h
Quantidade de vapor usada no processo	758, ton/h
Petrosix	4

uli -- CONCLUSÕES E COMENTÁRIOS FINAIS

6.5.1 - Conclusões

Os resultados obtidos, resumidos nas Tabelas VI.4, VI.5, VI.6, indicam, em primeira aproximação, a viabilidade termodinâmica do acoplamento proposto entre o PR-3000 e : U.C.X. de produção extrapolada.

É interessante notar a semelhança entire os dados obtidos para o sistema acoplado proposto e os correspondentes para um sistema composto do mesmo reator, aplicado na reforma do carvão. Para o caso do xisto, a temperatura máxima exigida é de 700°C (Petrosix) e para a reforma do carvão é de 850°C. A comparação pode ser ilustrada pelo exame das Tabelas VI.6 e HI.7, aquela para o xisto e esta para o carvão.

O balanço líquido de energia para o sistema é dado pelo fator Pc descrito pela equação $Pc = \frac{Ec}{Ep} \times 100$ (Cap. 5 -- ítem 5.5.1) que fornece a razão entre energia total gasta (produzida pelo reator nuclear) e a energia potencial latente na forma de combustível fóssil e enxôfre produzidos. Para o sistema acoplado, o fator Pc é de 31,03% que é substancialmente menor que para o sistema convencional auto-alimentado (Petrosix) e descrito no Capítulo 4 (Pc = 36,7%). A principal razão desta vantagem reside no aumento da eficiência na produção de energia elétrica.

A utilização do reator como fonte de energia, possibilita uma economia de gás combustível da ordem de 2.829 ton/dia e de óleo composto da ordem de 2.341 m³/dia. A economia anual de óleo seria de 5,3 milhões de barris.

A produção da U.C.X. acoplada ao PR-3000, seria da ordem de 95.500 barris/dia o que corresponde a 55,5% da atual capacidade de produção de petróleo do País, a saber, 172.000 barris/dia.

Nesta primeira aproximação para resolver o problema do acoplamento, não foram considerados os erros que acompanham os resultados, pois não existem dados mais detalhados disponíveis sobre o reator PR-3000 e a U.C.X.; pode-se, entretanto, estimar o desvio dos parâmetros calculados no ciclo de vapor, quando da utilização das sub-rotinas do programa digital. Esse desvio é da ordem de 0,01%. Uma análise mais rigorosa dos erros torna-se-ia relevante somente com a definição exata das características mecânicas dos componentes do sistema secundário da usina PR-3000.

6.5.2 - Recomendações

Em vista dos resultados obtidos, torna-se interessante analisar o mesmo circuito sob novas condições de contorno ou seja, levando em consideração fatores que afetam o rendimento do complexo, tais como, o rendimento real dos trocadores de calor, das bombas e do condensador, a colocação de um maior número de aquecedores regenerativos, c emprego de reaquecimento do vapor etc. Sob essas novas premissas, torna-se imperativo que se faça um estudo econômico em paralelo, pois, a viabilidade final do projeto só será conclusiva após provada esta viabilidade econômica. Apesar da economia de combustível fóssil, a grande dúvida recai sobre a necessidade de grandes investimentos de capital na construção do reator de alta temperatura para o sistema acoplado proposto.

6.5.3 - Comentários Finais

O consumo de energia pela humanidade assumiu tais proporções, que as reservas de combustíveis fósseis, antes consideradas ilimitadas, vão desaparecendo gradativamente. Assim aconteceu com as grandes reservas florestais, e, hoje, pode-se aceitar, com pequena restrição, a fatalidade do esgotamento próximo das jazidas petrolíferas.

Neste contexto, o carvão torna-se cada vez mais o substituto potencial para a próxima geração de energia carbohidrogênica contudo, desnecessário é enfatizar a importância que se atribui à energia de fissão nuclear como complemento vital para as próximas cinco décadas ou mais. O desdobramento dos atuais reatores de fissão térmica em reatores conversores avançados que operam no ciclo do tório e cosuper-regeneradores ("breeders") que operam no ciclo de urânio-plutônio aumentará de um fator cosetenta as reservas de energia nuclear potencial armazenada nos elementos Th-232 e U-238.

A energia solar e a fusão controlada representarão, talvez, as últimas fontes de energia para a humanidade. O domínio destas duas fontes elevará para bilhões de anos o período da sua esgotabilidade, isto é, assegurará ao homem uma fonte perene de energia.

Contudo, enquanto a última etapa não se concretiza, a necessidade do combustível fóssil leva ao aproveitamento potencial da maior reserva de carbohidratos da Terra, o xisto pirobetuminoso. Na extração do seu óleo é importante economizar a sua própria utilização. O presente trabalho cumpre a primeira etapa de um enfoque particular, a substituição da queima do óleo de xisto pelo calor nuclear.

APENDICE I

FATORES DE CONVERSÃO DE UNIDADES

OBS: Os fatores de conversão de unidades, salvo os dois primeiros, foram extraídos da Referência 17.

APÉNDICE 2

FINALIDADES DAS SUB-ROTINAS

As sub-rotinas usadas na resolução do ciclo de vapor são baseadas nas equações indicadas na Referência 36, e foram adaptadas para a linguagem Fortran IV por Morischita, H.M.

Essas sub-rotinas fazem os seguintes cálculos:

- 1. Sub-rotina CALTS (II,I.)- dado a pressão, calcula a respectiva temperatura de saturação.
- 2. Sub-rotina CAHLS (II,IF)- dado a temperatura, calcula a entalpia do líquido saturado.
- 3. Sub-rotina CASLS (II,IF)- dado a temperatura, calcula a entropia do líquido saturado.
- 4. Sub-rotina PIAS (II,IF)- dado a pressão e temperatura do vapor super-aquecido (inclusive vapor saturado) calcula a sua entalpia e entropia.
- 5. Sub-rotina PRE (II,IF)- dado a temperatura, calcula a respectiva pressão de saturação.
- 6. Sub-rotina ENTA (K,NT)- dado a pressão e a entropia do vapor superaquecido, calcula a sua temperatura de entropia.
- 7. Sub-rotina MOLI 8(I,X)- dado a entropia calcula a entalpia de uma transformação isoentrópica.
- Sub-rotina MOLI 7(II,I2)- dado a pressão e a entalpia do vapor superaquecido, calcula a temperatura e a entropia do ponto.
- 9. Sub-rotina MOLI 9(1)- dado a pressão e a temperatura do vapor superaquecido, calcula o volume específico do ponto.
- 10. Sub-rotina VAPO (B,NG,X,Y,)- dado X, calcula o valor de um polinômio.

APÉNDICE 3

Listagem do Programa Digital para a Otimização Térmica do Complexo. Nuclear Industrial PR-3000 - U. X. A.

Tabela A.1

Equivalência de Nomenclatura

Nomenclatura Usada:					
No texto	No programa digital	No texto	No programa digita		
Circuite	primário do reator	Ci	rlo de vapor		
Qr	Qr	ΔH1	DH1		
άl,	QI(1)	ΔH_2	υH		
Ó١2	Q1(2)	ΔF 3	DH3		
Th ₁	TH2	E	E1		
Th ₂	TH2	E2	£2		
Th ₃	тнз	Fa	FA		
Ógv	QGV	m,	VMT		
Cph	СРН	m ₃	XM3		
ḿ _h	HEM	m4	RM4		
Er	ER	n _c	REND		
		n _t	RENDI		
		Tit	TIT		
Circuito de	o gás de proc.				
		Rt	RT		
ma	GM				
Срд	CPG				
Tg ₁	TG1				
Tg ₂	TG2				
m,	XM31				

CRTRAN IV	G LEVEL	21	MAIN	D4	TE = 7706+		10/05/10
	r						
	Ċ	PRI GRAMA E	SCRITO POR REPERTO T.	PESSINE	1.E.A.	JANEIRO	197
0001	٩.	CONHCN/BLOG	CK 1/F1401,T1401.H140	1,5140)			
0002		COMMON/BLOC	CK 2/PS(4C).TS(40)				
6003		COMMON/BLOC	CK 2/165(40),565(40)				
0004		COMMON/BLOC	CK 4/ PH1401,44,54(40)	TMI(40)			
0005		COMMON/BLOC	CK 5/P1(40), ST, HF (40)	HG(401.5	-{40},SG(4	31,411401	.T1(40)
0006		COMMON/BLOC	CK 6/A(40).53,3(40).C	140)			
0007		COMMON/BLOC	CK 7/A144C3,8144C3				
0008		COMMON/BLOC	CK E/TESI(40)+HE5(40)				
0004		COMMON/BLOC	CK 9/A2(4C7,82(40),C2				
0010		DI JENSION P	PP[40};P4{40};F3!40};H	L14C1+Q10	501+Q11/5	5)	
	С	RESOLUCAD D	DO CIRCULTO PRIMARIO D	CO REATCR	PR3000 E	00 CICL	0
	С	DO GAS DE P	PROCESSO DA USINA DE	XISTC ACC	PLADA		
	<u>,</u>	DADCS DO RE	EATOR FR3000 SISTE	MA 'KS			
	ç	POTENCIA	QR=2563.8 WHATT				
	2	CIRCUITO	DE FELIO PRES AU + 4	D.BAR 1	EMP. DE S	104 CO C	ORE =TH1 950 0
	Ç	<u>TEMP.</u>	DE ENTR. NU COMESTHE =	250 C C	LOR ESPEC	IF4C0 00	HELTO WO INT.
	1	V=130 C	A TELCOU C SALE BA	NR A P=100	BAR +CPI	4=-193-0	JZKG#C
	Č	MASSA (DE FELIN HE 1920.0 P	GISEG.			
	Ĺ	CADUS CO GA	AS DE FIROLIS. SIST	IFMT AR2			
	ŕ	TEMP DE E	ENTHADA #161#160.C				
	C C	CEMP DE S	SAICARCUZE/CC. C				
	,	CALOR ESP	PECIFICO PLUIL DU GAS	* CPG=194	76. J/KG C		
~~ `	•.	MASSE UE	GAS 19 KG7556				
0011		QK=2930.0					
0012		141#450.0					
0013		1931 250 -					
0014		HEHEB 10.0					
0015		161=160+0					
0016		162= 00					
0017		CPH-51454					
COLE	~	C.PG=1920.					14 A 14 2
	č	LAUUS JA US	SINA CUMERCIAL DE XIS	IC PRUJEIA	ADA PELA S	14 21216	A TA
	C C	PROCESSA	-ENID =112000,104701A				
	÷.	CONSUMO	DE ULEU DARI#40970.0	J BANKISA	101A 111- 730 /	M	
	ž	CONSUNO	TANA DE VADOR COLSU	41868 - L14	11/# /25.4 . 33) 6 T		
	Ļ		TAXA DE VAPUR CUNSU	-10A A-314	- 375 . 7	UNZHUHA. FT	
0015	÷	01113-724	ELFIFICIDADE CONSCHI	IVA EIF 4	C2U+U ∀₩A	•	
0017		VH31-300 F	•				
0020		<pre>k+jt=jtt+j</pre>					
0021		C1422V+U	0				
	r	DARIASSIV	THE PE WISTE ACODIAN	-			
	č	DBOCECTAN	***** UE AISTU AUUPLAUA Aesto -Emitorea tok (*	- HU FH300	n: 313	12 TH TH3	
	č	PRUL 2334*	DE DIED ANDZ-EMPADY	,18 010316.0	14		
	ž	CONCURC	TALOD CASTO NA DETOD	04441370 14758 0711	244 21-5+37773	MUNTT	
	c c	C043040	TAVA DE LAGES COLEUMS	140077 4114 194 483-54			
	L C		FIETOICIDADE CONSUME		ΓΥ ΜΩΣΥΥΥ ΓΥ ΜΩΣΥΥΥ	> こ ' >	
	č	ESEATOR -	こして「「「」」ののないです。 しいいろしゃしい	/4 r∠=r*t	1 -MATI		
	L C	PERAIUR [SUBBOIL ON COMPLETE				
	L C	BALANCU UE	ENERGIA DU LUMPLERU				05 CAL 30
	Ľ	0H=01(5)	KI+GGV/KZ NENDO KI	E KZ 5510	IENCIAS D	1.1.400400	N UT LALIK
	C	E GERAD	DIR DE VAPER RESPECT.				
	C.	A EFICIEN	ILIA DU LICLU DE VAPCE	C = REND	-EN. UTIL	TEN-DISPO	14147L .
	C	REND = (Q	ITZI+E31/3GV +GNDE E3	1=FZ+ER	,×₩≠ENEAGI	∎ CONSUME	DA PELO
	C	PEATOR	L EH=15.PHATT				
6023		ER=15.0					

	C C	BALANCO DE CALCE GP= GI(1)+F/KI+GC+/K2 Toma-se k1=K2=1.0
	C	VARIACAD DE F
2024		F=1,92
3025		DO 10 II=1,4
3026		F=F+0.01
	С	PRODUCAD DA USINA DE XISTO BARRISZOTA
1027		BAR2=F+8AF1
	¢	CONSUMO DA USINA DE XISTO ACOPLADA AO PR3000 UNIDADE MKS
1028		QI(2)=F+QI(1)
0029		XN32=F+XN31
3030		E2*F#E1
9031	_	GM=Q1(2)+1000CCC,/(CPG+(TG2-TG1))
	c	CALCULO DA TEMP DE SAIDA DO HELIO DO TROCADOR DE CALOR THE
	c	TH2 GRAUS CENTIGRADES
3 635		TH2=950.0-Q1(2)+10000CC./(HEM+CPH)
	C	CALOR TRUCATO NE GERADER OF VAPER GGV HWATT
033		QG1=2*`5.8-Q.(2)
3 034		WRITE(6,33)
0035		33 FORMATT1H1,5HUSINA,3X,2HDE,3X,5HXISTC,3X,9HACUPLADA,2X,2HAU,3X,6HP
		1R30001
0036		WRITE(6,34) BAR2,F,GM
0 037		_34_FORMAT(:HO+5HBAR2=+FR+1+1X+10HBARRIS/DIA+4X+2HF=+F6+3+3X+3HGM=+F10
		1.3.6HKG/SEG}
0030		WRITE(^,35)QI(2),X432,E2
0 039		_35_FORMAT:1H0+6HQI12}=;F7+2+1X+5HMWATT+3X+5HXM32=+F6+2+1X+5HTON/H+5X+
		13HE2=+fA.3,1X,5H4WATT}
0040		WRITE:5,36)QG1,TH2
0041		-36 FORMATELH0+4HQGl=+F7+2+1X+5HMWATT+5X+4HTH2=+F6+1+1X+5HGPAUS+1X+7HC
		1ELCIUS)
	С	KESOLUCAO DO CICLO DE VAPOR
	C	DADOS DE ENTRADA UNIDACES INGLESAS
	с	CALOR DD GERADOR DE VAPOR EM BTU/SEG
0042		QGY=2G1+947.7
	C	TEMP. THE EM GRAUS FARENH.
0043		TH2F=TH2+1.3+3+32.C
	c	TEMPERATURA CO VAPOR NO. PONTO 1 G FAREN
0044		T111=TH2F-20.0
	C	MASSA DE VAPOR XMB EM LBM/SEG
0045		X43=X432+0.6123888
0046		T(5)=8D.O
0047		P151=0.50
8400		RT=0.80
	C	VARIACAD DA PRESSAD DA AGUA NO PENTE 1
0049		PP1=750.
0050		DO 10 1=1,9
0051		PP1=PP1+250.C
0052		P(1)=PP1
	с	CALCULO DE P(2) E T(2) ,SEGUNDO C'CRITERIC ABAIXO
6623		P+2)=P(1)/1.03
0054		T(2)=T(1)/1.Cl
	C	SUBROTINA PIAS DADO P E T CALCULA H E S NOS PONTOS 1 E 2
0055		CALL PIASI1,21
	C	EXPANSAD ISOENTROPICA DO VAPOR PONTO 3
	C	EXTPACAD DE VAPCH PARA A USINA DE XISTO
0056		PX3=70.0
0057		00 11 J=1,32C
0058		PX3=PX3+1_0

FCPTRAN IV & LEVEL 21 NAIN 1176 = 77063 10/05/15

	G LEVEL	21	MAIN	DATE = 77963	10/05/15
0059		P{31=PX3			
	С	CALCULD DE HF	++J+SF+SG HF ENT	ALPIA DO LIQUIDO SALURA:	20
	c	HG ENTALPIA D	G CAPOR SATURADO	SF ENTROPIA DO LIQ SAT	
	с	SG ENTROPIA D	O VAPOR SATURADO		
	c	SUBPOTINA CAL	TS DADO P CALCULA	TEMP DE SATURACAD	
0060		PS(3)=P(3)			
0061		CALL CALTSES.	33		
0062		TINITSIN			
	r	SUBBRITINA CAN	IS DADD TS CALCULA	H DC & LOUIDO SATURADO	
0043	C	TI SI 31=TSI 31		N DE ETECTOS SAIG-ASS	
0066		CALL CAHLSIN.	31		
0066		ME(3)-UL (/3)	2.		
0003	~	CHARGETTNA CAR			
	L	SUDRUTINA CAS	LS LADO I LIQASAI	· CALCOLA 5 DO ENGOLOD 5	ATURACIY
0000		123131#13131			
0067		CALL CASESUS.	21		
0068		SF(3)=SLS(3)			
0069		CALL PIASI3,3	+		
0070		HG(3)=H(3)			
0071		\$5131=5131			
0072		ST=S(2)			
0073		P1(3)=P(3)			
0074		CALL MOLIACA.	HL (31)		
	с	CALCUN D DE HE	31 LEVANDO-SE EM DI	INTA C RENDEMENTO DA TUR	ALVA
0075		H(3)=H1 1#RT	+11-9T38H121		
	<i>c</i>	CUBROT 101	TT DADC D E H CALC		ANJECTOR
0074	U	100m010 100		SEA T C S DE THICK SUPER	AGOLCIOJ
0078		P7(3)=P(3)			
0077		r==r();	• •		
0070		CALL MOLIFIS,	21		
0079		T(3]=TN1(3)			
0080		1F (T(3)-609.	0)11,12,12		
0081	11	CONTINUE			
0082	12	CONTINUE			
	С	CALCULO DO RES	NDIMENTO TEDRICO RI	ENDI	
0083		RENDI*(XM3#HE	3}+(E?+ER}+947.7}/	2G V	
	C	EXPANCAD ISOE	NTROPICA DO-VAPOR	ATE PONTO 5	
	C	CALCULO DE HG	HE SG SE NA LINHA	DE P(5)	
0084		PS(5)=P(5)			
0085		CALL CALTSES.	51		
0086		T151=TS151			
0087		TES1(51=TS/81			
0088		CALL CAMESIE	c 1		
0000		LEISSON (15)			
0037		************			
0090		103131=13(5)			
0091		THEL CASESIS,	71		
0092		5+151=525151			
0093		CALL PIASIS,5)		
0094		HG[5]=H(5)			
0095		SG(5)=S(5)			
0096		ST=S121			
0097		P1(5)=P(5)			
0098		CALL NOLISIS	HL (5))		
	C	CALCULD DE ME	SE LEVANDO-SS EM CI	ONTA C RENDEMENTO DA TUR	HINA
0000	•	H151aH1 (51#01	+13-9T3+1121		
4477	~	CALCULD DD TT	**************************************		
0100	L	TIT-FULLI DU TI			
0100		111414101214484	37171NG(37-Nr(37)		
0101		1103=1153			
0102		P(6)=P(5)			

.

FORTRAN EV	G LEVE	L 21	4211	DATE = 77353	13735715
0104		#\$17E(5.19)			
0105	1	8 FORMATILHO, 7(/).1	X, SHOICLO, 5X, 2HDE, 5	K.SHVAPOR)	
9136		WRITE16,193			
0107	1	9 FORMAT(1H0,1(7),1 (HATU/LAN)	X+8HUNIF JES+9X,3HP	SI.98.5HGRAUS,18.5	HEAREN,6X.7
0109		WPITE(6,201P411 .	T{1}, H(1)		
0109		WRITE(6,21)P(2).T	(2),4(2)		
0110	21	D FORMATEIHO,9HPONT(159,3)	2(1)=,3%,5HP(1)=,FA	.3,3×,5HT(1)=,F3.3,	3х,5нн(1)=,
0111	2	E FORMAT(1X,9HPONTE)	(2)=,3X,5HP(2)=,F8.	3,3×,5HT (21=F8,3,3×	,5HH(2)=,F9
0112		WRITELS, 371RENDI			
0113	3	FORMATELX. AHRENDI	• F6. 41		
	с	CALCULO DA PRESSAC	OTIMA DE EXTRACAC	DC VAPOR P. REAQUE	CINENTO
	c	VARTACAT DA PRESSA	O NO PONTE 4 DE 50	A 350 PSL PASSO 5	2 951
0114		PK4=20.0			
0115		D^ 10 K=1,3			
0116		P:4=PK4+]0-0			
0117		PI4J=PK4			
	С	CALCULO DE HG HF S	IG SF NA LINHA DE P	(4)	
0118		P3(4)=P(4)			
0119		CALL CALISIA,41			
0120		T(4)=TS(4)			
0121		1651(4)=15(4)			
0122					
0123		TI CIAS =T CIAS			
0124		CALL CASI STA. 43			
0126		SF(4)=S(5(4)			
0127		CA:1 PIAS(4.4)			
0128		HG(4)=H(4)			
0129		SG(4)=S(4)			
0130		ST=5121			
0131		P1(4)=P(4)			
0132		CALL MOLIA(4, HL(4)	1		
	с	CALCULO DE H(4) LE	VANDO-SE EM CONTA (I RENDINENTO DA For-	T 1.5
0133		H(4)=HL(4)+RT+(1-R	T1++(2)		
	2	SUBROTINA MOL17 DA	DO P E H CALCULA T	E 5 DC VAPINE SUPER	4 19 F 1 F
0134		P4(4)=P(4)			
9135					
0138		T(()_TMT()			
0137		91101=9141			
0139		T(10)=TS(4)			
0140		H()()=+5(4)			
	c	CALCULO DE TELLE			
0141	-	T(11)=T(10)-10.C			
0142		P(1')=100.0			
	C	SUBROTINA CAHLS DA	DO TELL CALCULA H	1111-00 LIQ. SATURAD	P₄입/된 분
	1	APROXIMADAMENTE IG	UAL AC H DO LIQUIO	COMPREMENTS NO PON	r > 11
0143		TLS1(11)=T(11)			
0144		CALL CAHL3(11,11)			
0145		HF[11]=⊨LS(11)			
0146		H(11)=HF(11)			
	С	CALCULO DAS FUNCCE	S NO PONTO 12		
0147		T(12)=T(11)			
5146		P(12)=P(1)			
	Ĺ	CALCULO DO TRABALH	U DAS BUMBAS		

	C FA= FATOR DE CORRECAD DE UNICADE
	C FA= 0.19504 {PCL/FTI++2+3TL/{L3F+FT}}
0149	FA=0.13504
2150	AA=0.014775
1151	a3+C-00027a
1152	
1153	
1153	DUI-10000003-+111-22-01111-10-41-41-10
1124	
7733	
1120	
1157	1+(P(1)-190)3,3,4
0150	3 DH2=10.00001935#P(1)##2+0.01773#P(1)-5.4942)#F4
C159	0+1=0+1+0+2
016C	GO TO 5
0161	4 DH2=6+05
0162	043=44788+F4+(ExPt38+Pt1))-1,54939)
0163	0HT=0H1+0H2+0H3
0164	5 H{}22=H{}11)+CHT
	C CALCUED DA MASSA TOTAL DE VAPOR VMI
0165	VMT=QGV/(H(1)-H(12))
	C PONTO 7
3410	H(7)=H(6)+0_31
0167	
0107	MARCE DE HADDO DIE CE DIGITE A HOLENDE DE HICTOLING
	C HASA DE VARDA GUE SE DIAIDE A USIAN DE ALSON ANS
0166	A 7 9 2 4 7 3
0169	¥[9]=//
0170	H(3)=45.
0171	0(9)=D(7)
	C PONTO 9 CALCULO DE FIGI
0172	H{9}={{V#T-X#3}+FK7}+K#3+FK3+T
	PONTO 4 CALCULO DA MASSA RHA
0173	日間ね=長父時でやじゃしえます-戸さらとう とくじゃく シードじょうき
	C CALCULO DA FLETAICICADE
0174	[FiPi3}-Pi4}14,14,15
0175	14 ExVNT#EHE23-HE423+HE423+EVUT-RH43#EHE43+HE333+EEVUT-RH4+EU33#EEHE333+EEU(33)+
0176	GO TO 16
0177	15 E=VMT#1H123-H1313#1VMT+XM3}#1H13}+H14}}+\(+\VMT-RM4+KW3}#\+(4)=+(5)}
0178	16 CONTINUE
	C CALCULO DO RENDIMENTO TOTAL
0179	86ND=16+X43++1311/264
0180	
0181	
0191	
0192	WALLSHOLD IN A FILMING AN EUCLARTED ALAY, SHELAR SA A AY SHELAR
0133	
0184	
0192	
0176	WRITE(6,25)P(6),T(6),H(1)
0187	WRITE(6,26)P(3),T(A),H(4)
C 98	WRITE(6,27)P(10),(()0),(()0)
0189	WRITE(6+28)P(11)+T(11)+
0190	#RITE(6,29)P(12),T(12),-(12)
0191	WRITELS, 3C)TIT, REND, 8
0192	WRITESS BIJVWT, ING, RMG
0193	WRITE(6,32) CELTA
0194	23 FORMATI1X,9HPUNTC(3)=,3X,5HP(3)=,58,3,3X,5HT(3)=,59,3,3X,5H-(3)=54
	1.31

FORTRAN IV G LEVEL 21 DATE TO DATE TO DATE TO DATE TO DATE

81

FCRTRAN	IV	G	LEV	EL	21		MAIN		DATE =	77068		10/05/16
0195				24	FORMAT(LX,9%PONTO(5)=,3X,5HP(5)=,F8.3,	3X,5HT	(5)=,F8,	•3,3X,51	1H [5]= F8
0196				25 1	FORMAT(LX,9HPONTC((6)=,3x,5HP(6)=,F8.3,	3X,5HT	(6)=,F8,	• 3 • 3X • 51	HH(6)=F9
0197				26 1	FORMAT(LX,9HPENTEL	8]=,3X,5HP(8)=,F8.3,	3X,5HT	(8)=,F8,	• 3 • 3X • 5ł	1H(8)=F9
0198				27 1	FORMAT(LX,10+PONTO(3)	(1C)=,2X, (H	P(1C)=,F8	▲3+2×+	6HT(10)=	=,F8.3,2	2X,6HH(1
0199				28 1	FORMAT(1)=,F8.	LX,10HPONTC(3)	(11)=,2X,6H	P(11)=,F8	.3,2X,	6HT(11):	=,F8.3,2	2X,6HH(1
0200				29 1	FORMAT(2)=,F8.	LX,10HPONTO 3)	(12)=,2X,6H	P(12)=,F8	•3•2X•	6HT(12):	=,F8.3,;	2X,6HH(1
0201				30	FORMATE	LX,4HTIT=,F	8.3,3X,5HRE	ND=, F8.4,	3X,2HE	=,F8.3,5	5HMWATT)
0202				31	FORMATE	LX,4HVMT=,F8	8.3,3X,4HXM	3=,F8.3,3	X,4HRM	4=,F8.3	,7HLBM/S	SEGI
0203				32	FORMATI	X, 6HDEL TA=	,F7.4)					
0204				10	CONTINU							
0205					STOP							
0206					END							

.

82

ABSTRACT

Some thermodynamics aspects of a resulting system, from the coupling of a THTR nuclear power plant type (Thorium High Temperature Reactor) and a commercial shale oil processing plant are studied.

The coupling is basically Usaracterized by the application of all available energy from the nuclear reactor to the shale oil processing. The nuclear reactor employed is a PR-3000, with 2980,8 MWt, developed in the Federal Republic of Germany for process heat applications (coal and steam reforming to produce reducers and products similar to the derivatives of the petroleum). The commercial shale oil plant considered (U.C.X.) uses the Petrosix process developed by the Superintendência da Industricitização do Xisto (S.I.X.) of Petrobrás.

Some flow diagrams are proposed for the coupling between the basic cycle of PR-3000 reactor with hot gas cycle of U.C.X. For a pre-determined flow diagram and boundary conditions the thermodynamic parameters that lead to a maximum efficiency of the system ware established.

The commercial shale oil plant must be redesigned in order to use all energy given by the PR-3000 and upgraded to produce 95.500 barrel/day. By comparing this system with the convencional feed-back method employed by U.C.X. it was proven to save 5,3 10⁶ barrel/year.

Also the main steam cycle parameters of PR-3000 reactor are determined, including those for the main heat exchanger, with data are similar to the corresponding steam and coal reforming system used in process heat application of the PR-3000.

REFERÊNCIAS BIBLIOGRÁFICAS

- ACTIER, J. Perspective: offertes par l'energie nucléaire en siderurgie. [Trabalho apresentado no 30º Congresso anual da ABM. Rio de Janeiro, Junho 1975.].
- BATISTA, P. N. Perspectivas abertas ao Brasil com a aquisição de tecnologia nuclear. [III Seminário de Dirigentes de Empresas de Energia Elétrica]. *Revta bras. Energia Elétrica*, Rio de Janeiro (31):43-58, jul /set. 1975.
- 3 BIGARELLA J J Geologia da formação trati în ACADEMIA BRASILEIRA DE CIÊNCIAS, Rio de Janeiro. Conferências do simpósio solize ciência e tecnologia do xisto, 1971, Curitiba, Parana. Rio de Janeiro [s.d.], p 1-79.
- 4. BOYER, V. S. et alii. Fulton station HTGR. Nucl. Engng Int., London, 19(219):635-58, 1974.
- 5. THE BRITISH NUCLEAR ENERGY SOCIETY, London. The high temperature reactor and process applications: proceedings of the international conference ... 26-28 November, 1974. London, 1975.
- CARPENTER, H. C. & COHINGHAM, P. L. Pipeline gas by hidrogasification. Chem. Engng Prog., New York, 52(8):68-70, 1966.
- 7. & SOLINS, H. W. Development of technology for "in situ" oil shale process. Colo. Sch. Mines Q., Golden, 69(2):143-69, apr.1974.
- 8. COSTA NETO, C. De Como e Por Que utilizar os xistos. Ciênc. Cult., S. Paulo, 28(9):1021-4, 1976.
- 9. _____ Química do xisto do Irati. In: ACADEMIA BRASILEIRA DE CIÉNCIAS, Rio de Janeiro. Conferências do simpósio sobre ciência e tecnologia do xisto, 1971, Curitiba, Paraná Rio de Janeiro [s.d.], p.137-66.
- 10. DECKEN, C. B. Preface: high temperature reactor for process heat applications. *Nucl. Engng Des.*, Amsterdam, <u>34</u>:1-2, 1975.
- 11. DIETRICH, G. et alii. Motivation for and possibilities of using nuclear process heat. Nucl. Engng Des., Amsterdam, <u>34</u>(1):3-13, Oct. 1975.
- 12. FELDMANN, H. & HUBLER, J. Hydrogasification of oil shale in a continuous-flow reactor. Ind. Engng Chem. Process Des. Dev., Easton, Pa., <u>4</u>(2):155-62, Apr. 1965.
- 13. GOLDENBERG, J. A crise de energia. Ciênc. Cult., S. Paulo, 27(7):712-3, 1975
- GRANT, B. Sinclair retorts oil shale in place in a series of tests. Oil Gas J., Tulsa, Okla., 62(29):84-6, July 1964.
- 15. HÖHLEIN, B. & DECKEN, C. D. Basic studies for the reformer calculation model. In: THE BRITISH NUCLEAR ENERGY SOCIETY, London. The high temperature reactor and process applications: proceedings of the international conference ... 26-28 November, 1974. London, 1975. p.8.1-8.2.
- 16. KATTERHENRY, A. A. Gas turbine nuclear power plants. J. nucl. Energy, B, Reactor Technol., London, <u>13</u>(1):7-13, Winter 1969-1970.
- 17. KEENAN, J. H. & KEYES, F. Thermodynamic properties os steam. New York, Wiley, 1966.
- TB: KLASS, D. L. Synthetic crude oil from shale and coal. Chem. Technol., Washington, D. C., <u>5</u>(8):499-510, 1975.

- KRAUSE, C. Thermochemical production of H₂: a new look. *Rev. Oak Ridge nat. Lab.*, Oak Ridge, <u>9</u>(1):33-6, 1975.
- 21. KUGELER, K. et alii. Considerations on light temperative reactors for process heat applications. Nucl. Engng Des., Amsterdam, <u>34</u>(1):21-6, 1975.
- Technical problems of nuclear steam reforming. In: THE BRITISH NUCLEAR ENERGY SOCIETY, London. The high temperature reactor and process applications: proceedings of the international conference... 26-28 November, 1974. London, 1975. p.9.1-9.11.
- LOS ALAMOS SCIENTIFIC LABORATORY, Los Alamos. Proceedings of the first national topical meeting on nuclear process heat applications, N. Mex., October 1-3, 1974. Los Alamos, N. Mex. [s.d.].
- 24. METZ, W. D. Oil shale: a huge resource of flow-grade fuel. Science, N. Y., 184:1271-5, June 1974.
- 25. MURATA, H. Present and future of nuclear energy development and utilization in Japan. J. Br. nucl. Energy Soc., London, <u>15</u>(2):111-22, 1976.
- NUCLEAR energy utilization for iron & steel production National project: new subject for 1973.
 [s.1.] Ministry of International Trade & Industry, Agency of Industrial Science & Technology, Oct. 1972.
- 27. OESTEWIND, D. et alii. Multipurpose nuclear process heat for energy supply in Brasil, São Paulo, IEA. [Trabalho apresentado na "Conference on Transfer of Nuclear Technology", Persepolis/Shiraz, Iran, Abril 10-13, 1973].
- 28. POWER, reactor 1974 index: section 2. Technical data. Nucl. Engng Int., London, <u>19</u>(215):318-35, 1974.
- PRIEN, C. H. Current developments in world oil shale technology. In: ACADEMIA BRASILEIRA DE CIÊNCIAS, Rio de Janeiro. Conferências do simpósio subre ciência e tecnologia do xisto, 1971, Curitiba, Paraná. Rio de Janeiro [s.d.]. p.201-24.
- QUADE, K. M. The high temperature gas cooled reactor as a source of high temperature process heat. Nucl. Engng Des., Amsterdam, <u>26</u>:179-86, 1974.
- MARCHETTI, S. Process application of nuclear heat. [Trabalho apresentado na "American Chemical Society National Meeting, Atlantic City, New Jersey, September 9, 1974]. San Diego, Calif., General Atomic, May 1974. (GA-A13012).
- 32. RIBEIRO, C. A. S. et alii. Xisto, energia em potencial. Rio de Janeiro, PETROBRAS, Assessoria. Geral de Relações Públicas, 1964. p.28-34.
- 33. RUSSEL, J. Nuclear water-splitling and the hydrogen economy. San Diego, Calif., General Atomic, Feb. 1974. (GA-A12893).
- 34. RUSSEL, JR, J. L. & PORTER, J.T. A search for thermo-chemical water splitling cicles. San Diego, Calif., General Atomic, Mar. 1974. (GA-A12908).
- 35. SCARPINELLA, C. A. & HUKAY, R. Y. Aplicação da energia nuclear na siderurgia e a utilização do xisto como fonte de redutores, São Paulo, Instituto de Energia Atômica, abr. 1974. (IEA-335).

- SCHNACKEL, H. C. Formulations for the thermodynamic properties of steam and water. Trans Am. Soc. mech. Engrs, New York :959-71, May 1958.
- SCHORA, F. C. A. G. A. coal gasification research. [Paper presented at fifth synthetic pipeline gas symposium, O'Hare Irin, Chicago, III., October 29-31, 1973]. Chicago, III., Institute of Gas Technology [s.d.].
- 38. Progress in the Hygas process. [Paper presented at 79th national meeting, 8th petrochemical and refining exposition of the american Institute of Chemical Engineering, Houston Texas, March 16-20, 1975]. Chicago, III., Institute of Gas Technology [s.d.].
- 39. SCHULTEN, R. & KUGELER, K. Coal gasification and other nuclear process heat applications. In: LOS ALAMOS SCIENTIFIC, LABORATORY, Los Alamos, N. Mex. Proceedings of the first national topical meeting on nuclear process heat applications, Los Alamos, N. Mex., October 1-3, 1974. Los Alamos, N. Mex., Nov. 1974. (LA-5795-C; e, CONF-741032), p.210-9.
- 40. _____ et alii. The pebble bed high temperature reactor as a source of nuclear process heat, v.1: Conceptual design. Jülich, Kernforschungsanlage, Oct. 1974. (Jül-1113-RG).
- 41. SEWARD, H. L., ed. *Marine engineering*. New York, The Society of Naval Architects and Marine Engineers, 1962. v.2, p.43 e 48.
- 42. SHALE oil ... The problems and the prospects. Oil and Gas J., Tulsa, Okla. :65-80, Mar. 1964.
- 43. SHALE oil: process choise, Chem. Engng, New York, 81(10):66-9, May 1974.
- 44. SIEBKER, M. & MARTIN, H. Use of high temperature nuclear heat in the chemical and steel industries. *Energie nucl.*, Paris, <u>13</u>(4):275, Jul. 1971.
- 45. SOLIMAN, M. A. et alii. Thermochemical hydrogen generation: heat requirements and costs. Science, N. Y., <u>188</u>(4192):1036-7, June 1975.
- 46. SPIEWAK, I. & ANDERSON, T. D. Overview of reactor applications for low-temperature industrial process heat uses. In: LOS ALAMOS SCIENTIFIC LABORATORY, Los Alamos. Proceeding of the first national topical meeting on nuclear process heat applications, Los Alamos, N. Mex., October 1-3, 1974. Los Alamos, N. Mex. [s.d.], p.29, 32.
- 47. TEGEDER, F. & MAYER, L. Métodos de la indústria química. Barcelona, Reverte, 1967. v.1, p.128.
- 48. TEGGERS, H. Hydrogasification of brown and hard coal by using heat from gas cooled high temperature nuclear reactors. In: THE BRITISH NUCLEAR ENERGY SOCIETY, London, The high temperature reactor and process applications: proceedings of the international conference... 26-28 November, 1974. London, 1975. p.10.1-10-10.
- 49. THIRIET, L. Investigation of the potentialities of nuclear energy in the industrial heat morket. Energie nucl., Paris, <u>13</u>(5):370, sep.-oct. 1971.
- TING, D. K. S. Estudos preliminares de viabilidade neutrônica e termohidráulica de um reator OTTO-HTR, utilizando plutônio como combustível. São Paulo, 1976. [Dissertação de mestrado apresentada à Escola Politécnica da USP].
- 51. TSUNODA, R. The preliminary design of the experime, tal multipurpose high temperature gas cooled reactor. Fuji elect. Rev., 19(2):73-82, 1972.
- —53- VAN WYLEN, G. J. & SONNTAG, R. E. Fundamentos da termodinâmica clássica. São Paulo, Blücher, 1973.

- 53 VARISCO, A. O processo Petrosix A usina protóte de trati. In: ACADEMIA BRASILEIRA DE CIÊNCIAS, Rio de Janeiro. Conferências do storestato sobre ciência e tecnologia do xisto, 1971, Curitiba, Paraná. Rio de Janeiro [s.d.], p.225 54.
- 54 WEISMANTEL, G. E. Shale oil not for a new. Chem. Engng, New York, 81(10):62-4, May 1974.
- 56. WORLF, L. et alii. Fuel elements of the high temperature pebble-bed reactor. Nucl. Engng Des , Amsterdam, 34:93-108, 1975.
- 57. O XISTO entra na fase industrial. Quím. Derivados, São Paulo (97):32-8, 1974.
- 58. XISTO: a hora da mobilização. Petróleo e Petroquim., Rio de Janeiro (8/9):33, 1973.
- 59. YOUNGBLUT, K. C. Materials selection . . . coal gasification pilot plant. Mater. Prot. Performance, Houston, Tex., <u>12</u>(12):33-6, 1973.