UNIVERSIDADE DE SÃO PAULO . FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS

+ Brows for and a for a

CONTRIBUIÇÃO AO MÉTODO POLINOMIAL DE SOLUÇÃO APROXIMADA DA EQUAÇÃO POLI-ENERGÉTICA DE BOLTZMANN

PAULO SARAIVA DE TOLEDO Orientado: Jayme Tiommo E. 4 O

TESE DE DOUTORAMENTO APRESENTADA À FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DA UNIVERSÍDADE DE SÃO PAULO

• 1968 •

SÃO PAULO - BRASIL

ERRATA

1) Página 8, 4ª e 5ª linhas.

onde se lê:

. e v é o módulo da velocidade vetorial relativa do neutron e do núcleo do meio.

lcia-se:

. e sua determinação, onde v é o módulo da velocidade do neutron relativa ao sistema de Laboratório, depende da consideração da velocidade relativa do neutron o dos núcleos do meio (10).

2) Página 23, na linha logo abaixo da última equação do sistema (2.35). onde se lê:

O desenvolvimento sucessivo da dependência energética en uma serie de polinomios de Legendre Pm(µ). . . .

leia-se:

O desenvolvimento sucessivo da dependência energética em poli nômios g_i(E) da energia, e da dependência angular em uma série de polinômios de Legendre $P_m(y)$

3) Página 72, 7ª linha.

onde se lê:

Para ve $\left(-\frac{1}{\beta_{T}}, \frac{1}{\beta_{T}}\right)$, a matriz diagonal $\left(u\right)$...

leia-se:

Para ve $\left(-\frac{1}{\beta_{L}}, \frac{1}{\beta_{L}}\right)$, a matriz diagonal $\left(\mu(^{2}\nu, \mu)\right)$

•

•

τ.

· .

.

-.

• • •

· · ·

• ·

•

.

***1**

A meus pais

.

÷

•

•

a % a

CAPÍTULO I

CONSIDERAÇÕES GERAIS;

1.1 - Introdução

A equação de Boltzmann, no campo da Física de Reatores, no caso da geometria plana, com secção de choque dependente da energia, - caso poli-energético -, tem recebido especial atenção somente nos últimos anos, em contraste com a equação mono-energética que tem sido objeto de tratamento dos mais extensos e completos desde a década de 1930.

A equação de Boltzmann ou de transporte de neutrons, a ser apresentada no item seguinte, e que consideraremos neste trabalho, é a usual(1-3) no tratamento do comportamento espacial e temporal de neutrons interagindo com as partículas de meios materiais.

Apesar de ser uma equação integro-diferencial linear, em contraste com a não linearidade da equação mais geral que governa os fenôme nos de transporte em que intervêm moléculas ou átomos, a obtenção de soluções exatas é extremamente difícil, a não ser em certos casos bastante especiais.

Esta dificuldade de obtenção de soluções exatas em casos de in terêsse, levou ao desenvolvimento de métodos diversos de aproximação.

No caso da equação mono-energética, um dos métodos mais utilizados foi e continua sendo o denominado das esféricas harmônicas. A sim plicidade dêste método aliada à facilidade que apresenta para a programa ção com computadores digitais, tornou-o um dos mais importantes tanto nas aplicações tecnológicas como nas pesquisas. Estas, em geral, se dedicam a esclareçer a origem de discrepâncias observadas entre resultados experimentais e os teóricos, ou visam obter uma melhor compreensão dos fenômenos físicos que determinam os comportamentos observáveis de po pulações de neutrons em interação com sistemas materiais diversos.

Neste trabalho, o método das esfériças harmônicas é extendido ao caso poli-energético, desenvolvendo-o de maneira a obter soluções gerais para a equação de Boltzmann em ausência de fontes externas e de fis são, e para um meio com características de espalhamento elástico isotrópico.

Em particular, a equação de Boltzmann que consideraremos será a adaptada ao estudo do denominado fenômeno de termalização: ou seja,será considerada uma forma adequada para descrever o comportamento de uma população de neutrons em um meio onde há possibilidade de, em colisões com os núcleos, os neutrons ganharem ou perderem energia. Em outras palavras, nos problemas que consideraremos as energias cinéticas dos neutrons são comparáveis com as de agitação térmica dos átomos ou moléculas do meio com o qual interagem.

1.2 - Termalização de neutrons: geometria plana e regime estacionario

Dentre os problemas que apresentam especial importância no estudo da termalização de neutrons, se encontra o de determinar o espectro completo (espacial, angular a energético) dos neutrons, em um dado meio, no qual há uma fonte externa de neutrons, constante no tempo.

Para precisar este problema, vamos considerar a equação linear de Boltzmann. E, para facilitar a definição e interpretação física das grandezas que al comparecem, descreveremos a população de neutrons através de sua densidade n($\vec{r}, v, \vec{\Omega}; t$). Em Física de Reatores, n($\vec{r}, v, \vec{\Omega}; t$) é de finida como segue.

Consideremos um conjunto de N neutrons em um certo instante de tempo t. A descrição, clássica, da evolução dêste conjunto, necessitaria a determinação do movimento de um ponto representativo num espaço a 6N dimensões.

Porém, em Física de Reatores (como allas em Mecanica Estatísti ca em geral) estamos usualmente interessados em valores médios de certas grandezas, tomados sôbre os elementos do conjunto acima.

Introduzamos uma função $\rho(\vec{r}, \vec{v}; t)$ tal que

$$\rho(\mathbf{r}, \mathbf{v}; t) \cdot d\mathbf{x} d\mathbf{y} d\mathbf{z} d\mathbf{v}_{\mathbf{v}} d\mathbf{v}_{\mathbf{v}} d\mathbf{v}_{\mathbf{v}}$$
(1.1)

. 2 .

represente o número médio - no sentido de média sobre o conjunto - de neutrons presentes, no instante t, no elemento de volume dx dy dz centra do em T, com velocidades com componentes entre

$$v_x v_x + dv_x \cdot v_y v_y + dv_y e v_z v_z + dv_z$$

Em coordenadas polares no espaço das velocidades, (1.1) fica:

$$\rho(\vec{r}_{s}v,\vec{\Omega};t) dx dy dz v^{2} dv sen 0 d9 d\phi$$
 (1.2)

onde o versor $\vec{\Omega}$ é definido através de:

$$\vec{v} = v \cdot \vec{\Omega}$$
 (1.3)

 $e d\Omega = sen \theta d\theta d\phi$

é o elemento de ângulo sólido

A densidade de neutrons $n(\vec{r}, v, \vec{\Omega}; t)$ utilizada em Física de Reatores é definida como:

$$n(\vec{r}, v, \vec{n}; t) = \rho(\vec{r}, v, \vec{n}; t)v^2$$
 (1.4)

e portanto: $n(\vec{r}, v, \vec{\Omega}; t)$ dx dy dz dv dv dR = número de neutrons que, no instante t, se encontram no elemento de volume dx dy dz centrado em \vec{r} , com velocidade vetorial de módulo entre $\vec{v}_{p-1}, v + dv$, contida no angulo sólido dΩ centrado em $\vec{\Omega}$.

Considerando, por simplicidade, meios não multiplicadores, a equação linear de Boltzmann para $n(\vec{r}, v, \vec{n}; t)$ se escreve imediatamente, b<u>a</u> lanceando a variação temporal durante dt no elemento de volume hexadimen sional dx dy dz dv a d α :

$$\frac{\partial}{\partial t} n(\vec{r}, \mathbf{v}, \vec{\Omega}; t) = -\vec{v} \times \operatorname{grad}_{T} n(\vec{r}, \mathbf{v}, \vec{\Omega}; t) - \Sigma_{a} (\vec{r}, \mathbf{v}) \cdot \mathbf{v} \cdot n(\vec{r}, \mathbf{v}, \vec{\Omega}; t) - \int_{0}^{\infty} d\mathbf{v}' \int_{4\pi} d\Omega' \Sigma_{a} (\mathbf{v}, \vec{\Omega} + \mathbf{v}', \vec{\Omega}'/\vec{t}) \mathbf{v} \cdot n(\vec{r}, \mathbf{v}, \vec{\Omega}; t) + \frac{1}{2} \int_{0}^{\infty} d\mathbf{v}' \int_{4\pi} d\Omega' \Sigma_{a} (\mathbf{v}', \vec{\Omega} + \mathbf{v}, \vec{\Omega}/\vec{t}) \mathbf{v}' \cdot n(\vec{r}, \mathbf{v}', \vec{\Omega}'; t) + S(\vec{r}, \mathbf{v}, \vec{\Omega}; t)$$
(1.5)

З.

:onde:

 $\Sigma_a(\vec{r},v) = \text{probabilidade por unidade de percurso, para que, na vizinhança do ponto <math>\vec{r}$ do meio, um neutron de velocidade v seja absorvido

 $\Sigma_{s}(\mathbf{v},\vec{\Omega},\mathbf{v},\vec{n}',\vec{n}',\vec{r})d\mathbf{v}'d\Omega' = probabilidade, por unidade de percur$ $so, para que em meutron de velocidade <math>v\vec{\Omega}$ nas vizinhanças do ponto \vec{r} do meio, sofra um choque elástico após o qual sua velocidade final tenha mo dulo contido em v' \longmapsto v'+dv' e direção dentro do ângulo sólido dΩ' centrado em $\vec{\Omega}'$.

 $S(\vec{r}, v, \vec{h}; t) dv d\vec{\Omega} = número de neutrons emitidos por unidade de tempo pela fonte, nas vizinhanças do ponto <math>\vec{r}$ do meio, com velocidades com módulo entre $v_{\vec{r}-\vec{n}}$ vidv e direção dentro de d<u>Ω</u> centrado em $\vec{\Omega}_{\vec{n}}$

O carater linear de (1.5) decorre de não se considerarem as co lisões neutron-neutron, aproximação esta que em Eísica de Reatores é excelente.

A presença de r como variável nas secções de choque macroscópi cas é necessária se se desejar uma equação válida para meios inhomogêneos.

No restante dêste trabalho consideraremos somente melos homogê neos, eventualmente separados por superfícies de descontinuidade; assim, as secções de choque macroscópicas, em cada meio, não dependerão de \tilde{r} e este variável será omitida como argumento das funções que comparecem em (1.5).

Outra simplificação importante resulta da consideração de meios isotrópicos. Neste caso, a dependência angular de $\Sigma_{s}(v, \vec{\Omega} + v^{\dagger}, \vec{\Omega}^{\dagger})$ so pode se dar através de $\vec{\Omega} \times \vec{\Omega}^{\dagger}$, ou seja através do ângulo de espalhamento, e não da orientação espacial dos ângulos individuais.

Portanto, para meio homogêneo e isotrópico a equação linear de Boltzmann fica:

$$\frac{\partial}{\partial \mathbf{t}} \mathbf{n} \quad (\vec{r}, \mathbf{v}, \vec{\Omega}; \mathbf{t}) = -\vec{v} \operatorname{grad}_{\vec{T}} \mathbf{n} (\vec{r}, \mathbf{v}, \vec{\tilde{n}}; \mathbf{t}) - \mathcal{E}_{a}(\mathbf{v}) \cdot \mathbf{v} \cdot \mathbf{n} (\vec{r}, \mathbf{v}, \vec{\tilde{n}}; \mathbf{t}) + \frac{1}{2\pi} \int_{40}^{\infty} d\mathbf{v}^{\dagger} \int_{4\pi} d\Omega^{\dagger} \mathcal{E}_{s}(\mathbf{v}^{\dagger} \rightarrow \mathbf{v}; \vec{\tilde{n}} \times \vec{\tilde{n}}^{\dagger}) \mathbf{v}^{\dagger} \cdot \mathbf{n} (\vec{r}, \mathbf{v}^{\dagger}, \vec{\tilde{n}}^{\dagger}; \mathbf{t})$$

$$= \frac{1}{2\pi} \int_0^\infty d\mathbf{v}^{\prime\prime} \int_{4\pi} d\mathbf{\hat{u}}^{\prime\prime} \Sigma_{\mathbf{s}}(\mathbf{v} * \mathbf{v}^{\prime\prime}; \vec{\mathbf{n}} \times \vec{\mathbf{n}}^{\prime\prime}) \mathbf{v}_{\mathbf{n}}(\vec{\mathbf{r}}, \mathbf{v}, \vec{\mathbf{n}}; \mathbf{t}) + S(\vec{\mathbf{r}}, \mathbf{v}, \vec{\mathbf{n}}; \mathbf{t})$$

tendo posto

$$\Sigma_{\mathbf{S}}(\mathbf{v}^{\mathbf{v}},\vec{\Omega}^{\mathbf{u}}\mathbf{v},\vec{\Omega}) = \frac{1}{2\pi} \Sigma_{\mathbf{S}}(\mathbf{v}^{\mathbf{u}}\mathbf{v};\vec{\Omega}\times\vec{\Omega}^{\mathbf{v}}).$$

As integrações em relação a dû" e dv" podem ser efetuadas, obtendo-se

$$\frac{1}{2\pi} \int_{0}^{\infty} dv'' \int_{\pi} d\Omega'' \Sigma_{g} (v + v''; \vec{\Omega} \times \vec{\Omega}'') \cdot v \cdot n(\vec{r}, v; \vec{\Omega}; t) =$$

$$= \int_{0}^{\infty} dv'' \Sigma_{g} (v + v'') \cdot v \cdot n(\vec{r}, v; \vec{\Omega}; t) =$$

$$= \Sigma_{g} (v) \cdot v \cdot n(\vec{r}, v; \vec{\Omega}; t) \qquad (1.7)$$

com

$$\Sigma_{\mathbf{S}}(\mathbf{v}_{+}\mathbf{v}^{\prime\prime}) \approx \frac{1}{2\pi} \int_{\mathbf{u}_{\pi}} d\Omega^{\prime\prime} \Sigma_{\mathbf{S}}(\mathbf{v}_{+}\mathbf{v}^{\prime\prime};\vec{\Omega}\times\vec{\Omega}^{\prime\prime})$$

$$\Sigma_{\mathbf{S}}(\mathbf{v}) \approx \int_{0}^{\infty} d\mathbf{v}^{\prime\prime} \Sigma_{\mathbf{S}}(\mathbf{v}_{+}\mathbf{v}^{\prime\prime}) = \int_{0}^{\infty} d\mathbf{v}^{\prime\prime} \int_{\mathbf{u}_{\pi}} d\Omega^{\prime\prime} \Sigma_{\mathbf{S}}(\mathbf{v},\vec{\Omega}_{+}\mathbf{v}^{\prime\prime};\vec{\Omega}^{\prime\prime}).$$

Sendo assim, $\Sigma_{s}(v)$ é a secção de choque macroscópica usual para espalhamento elástico.

Transpondo para o primeiro membro $[\underline{\Sigma}_{S}(v).v.a(\vec{r},v,\vec{\Omega};t)]$ e notan do que

$$\Sigma_{a}(\mathbf{v}) + \Sigma_{s}(\mathbf{y}) = \Sigma(\mathbf{v}) \tag{1.8}$$

onde $\Sigma(v)$ é a secção de choque macroscópica total, obtemos a forma da equação de Boltzmann dependente do tempo, linear, para meios não multipli cadores, isotrópicos e homogêneos:

$$\frac{\partial}{\partial t} n(\vec{r}, v, \vec{n}; t) = -\vec{v} \times \operatorname{grad}_{t}^{+} n(\vec{r}, v, \vec{n}; t) - \Sigma(\vec{v}) \cdot v_{*} n(\vec{r}, v, \vec{n}; t) +$$

5.

. 6 .

$$+\frac{1}{2\pi}\int_{0}^{\infty}d\mathbf{v}'\int_{4\pi}d\Omega'\Sigma_{s}(\mathbf{v}' + \mathbf{v};\vec{\Omega} \times \vec{\Omega}')\mathbf{v}'\cdot\mathbf{n}(\vec{r},\mathbf{v}',\vec{\Omega}';t) + S(\vec{r};\mathbf{v},\vec{n};t) \qquad (1.9)$$

Nos casos estacionários, independentes do tempo, o primeiro mem bro se anula e o termo de fonte não pode depender do tempo.

A (1.9) se reduz a: '

$$\vec{\mathbf{v}} \times \operatorname{grad}_{\frac{1}{2}} n(\vec{r}, \mathbf{v}, \vec{\Omega}) + \Sigma(\mathbf{v}) \cdot \mathbf{v} \cdot n(\vec{r}, \mathbf{v}, \vec{\Omega}) =$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\mathbf{v}^{*} \int_{4\pi}^{\infty} d\Omega^{*} \Sigma_{s}(\mathbf{v}^{*} \rightarrow \mathbf{v}; \vec{\Omega} \times \vec{\Omega}^{*}) \mathbf{v}^{*} \cdot n(\vec{r}, \mathbf{v}^{*}, \vec{\Omega}) + S(\vec{r}, \mathbf{v}, \vec{\Omega})$$

$$(1.10)$$

Definindo um fluxo de neutrons $\vec{\Phi}(\vec{r}, \mathbf{v}, \vec{\Omega})$

 $\bar{\Phi}(\vec{r}, \mathbf{v}, \vec{\Omega}) = \mathbf{v}_{\circ} \mathbf{n}(\vec{r}, \mathbf{v}, \vec{\Omega})$ (1.11)

da equação (1.10) obtemos:

4

$$\vec{\Omega} \times \operatorname{grad}_{\vec{r}} \Phi(\vec{r}, \mathbf{v}, \vec{\Omega}) + \Sigma \Phi(\vec{r}, \mathbf{v}, \vec{\Omega}) =$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} \operatorname{d} \mathbf{v}^{\dagger} \int_{4_{\pi}} \operatorname{d} \Omega^{\dagger} \Sigma_{s} (\mathbf{v}^{\dagger} + \mathbf{v}; \vec{\Omega} \times \vec{\Omega}^{\dagger}) \Phi(\vec{r}, \mathbf{v}^{\dagger}, \vec{\Omega}) + S(\vec{r}, \mathbf{v}, \vec{\Omega})$$
(1.12)

As simplificações necessárias para se obter soluções - analíti cas ou numéricas - da equação (1.12) - são essencialmente de três tipos:

 a) as ligadas à geometria do meio: - em geral, consideram-se meios dotados de simetrias geométricas tais que reduzam o número das variáveis espaciais envolvidas; como, por exemplo, meios com simetria plana, esférica ou cilíndrica.

Utilizando sistemas adequados de coordenadas espaciais, a equa ção geral, tri-dimensional nas variáveis espaciais, se reduz a equação ou equações em uma ou duas variáveis. Em particular, os casos de geometria plana foram extensamente considerados; e, em menor escala, os de ge ometria cilíndrica.

b) as ligadas à dependência angular; o espectro angular das so

luções de (1.12) é fortemente influenciado pelas condições de contôrno impostas nas superfícies de separação do meio e também pela dependência angular do núcleo de espalhamento $\Sigma_{s}(v \rightarrow v'; \vec{\Omega} \times \vec{\Omega}')$. A simplificação, ou melhor, o tratamento aproximado que, em geral, se adota neste caso, consiste em desenvolver $\Sigma_{s}(v \rightarrow v'; \vec{\Omega} \times \vec{\Omega}')$ em uma série de esféricas harmônicas em $(\vec{\Omega} \times \vec{\Omega}')$ mentendo, posteriormente, somente os primeiros têrmos.

Na grande maioria das pesquisas nesse campo, êste desenvolvimento é truncado logo no primeiro ou segundo têrmo, ou seja, so se cons<u>i</u> dera o caso de espalhamento isotrópico ou anisotrópico linear.

c) as ligadas à dependência energética: a dependência energéti ca da solução decorre tanto da forma de $\Sigma_{s}(v' \rightarrow v; \vec{\Omega} \times \vec{\Omega}')$ como da de E(v).

Considerações físicas relacionadas com problemas de interêsse, levam a se estudar, separadamente, dois casos distintos importantes:

i) moderação de neutrons: quando a energia dos neutrons é bem superior à de agitação térmica das moléculas do meio com as quais intera gem, a probabilidade de ocorrer um choque elástico neutron-núcleo com energia final do neutron maior que a inicial, é pràticamente nula.

Como consequência $\Sigma_{S}(v' + v; \hat{\Omega} \times \hat{\Omega}') = 0$ se $v_{>}v'$.

E, para v<v', a forma do núcleo de espalhamento é razoavelmente simples ⁽¹⁾, pois mesta aproximação é lícito se desprezar a velocidade de agitação térmica dos neutrons do meio.

A dependência energética que aparece através de $\Sigma(v)$ é, nesta região de energia caracterÍstica da moderação, bastante complexa, princi palmente se considerássemos meios multiplicadores, onde comparecem núcleos pesados apresentando nÍveis de ressonâncias importantes e numerosos.

Deixamos de fazer outras observações a respeito, pois o caso a que se aplicarã o método a ser apresentado nesta tese é o de termalização.

11) termalização: na zona de energia dos neutrons característi ca da termalização, a energia dêstes é comparável à de agitação térmica dos núcleos do meio. Assim, o núcleo de espalhamento tem valores apreci áveis tanto para v>v' como para v<v', acarretando complicações analíticas sérias para a obtenção de soluções de (1.12). Quanto a $\Sigma(v)$, nesta região de termalização, é uma função bastante complexa, pois o movimento das partículas do meio não é, em geral, desprezível, e v é o módulo da velocidade vetorial relativa do neutron e do núcleo do meio.

Vários tratamentos aproximados são correntemente utilizados e serão sucintamente descritos logo mais.

É oportuno notar que un caso especial que recebeu un tratamen to extenso, como já citamos, é o de neutrons mono-energéticos; ou seja, considera-se que $\Sigma_{g}(v^{4}+v)$ é tal que não haja troca de energia nas colisões neutron-núcleo e que $\Sigma(v)$ independa da energia. Aliãs, basta esta última admissão para que o problema poli-energético se reduza a um monoenergético (1,4).

Nesti tese, as simplificações que adotaremos serão explicitadas paulatinamente.

A primeira delas se refere à consideração de meio com geometria plana, fatia plana, por exemplo, sem fonte externa. Isto nos permi te escrever, imediatamente, a equação (1.12) como:

$$\mu \frac{\partial}{\partial x} \Phi(x, v, \mu) + \Sigma(v) \Phi(x, v, \mu) =$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} dv^{*} \int_{0}^{\infty} d\Omega^{*} \Sigma_{s}(v^{*} \rightarrow v; \mu o) \Phi(x, v^{*}, \mu^{*}) \qquad (1.13)$$

$$\mu = \vec{a} \times \vec{i} ; \mu' = \vec{a}' \times \vec{i}$$
 (1.14)

$$\mu \sigma = \vec{\Omega} \times \vec{\Omega}^{\dagger}$$
. (1.15)

sendo θ o ângulo de espalhamento do neutron e $\vec{1}$ o versor da normal às fa ces consideradas e orientando os eixos das coordenadas espaciais como

. 8 .

indicado na figura abaixo

A solução da equação (1.13) com condições adequadas de contôrno⁽¹⁾, só foi obtida analiticamente⁽⁵⁻⁹⁾ para certas formas bastante especiais tanto do núcleo de espelhemento $\Sigma_{s}(\mathbf{v}' \star \mathbf{v}_{i} \mu_{0})$ como da variação de $\Sigma(\mathbf{v})$ com a velocidade do neutron.

Em particular, mesmo com formas simples para $\Sigma(\mathbf{v})$, a presença do argumento μ_0 em $\Sigma_{\mathcal{B}}(\mathbf{v}' \rightarrow \mathbf{v}; \mu_0)$ dificulta bastante a obtenção de uma solu ção exata; e tôdas as soluções exatas das referências citadas foram obti das para o caso de espalhamento isotrópico, ou seja, independência de $\Sigma_{\mathbf{S}}(\mathbf{v}' \rightarrow \mathbf{v}; \mu_0)$ de μ_0 .

A dependência de μ_0 é usualmente tratada, como já notamos, através de um desenvolvimento de $\Sigma_{\rm S}(v' \rightarrow v; \mu_0)$ em polinômios de Legendre em μ_0 .

Pondo-se

$$\Sigma_{s}(\mathbf{v}'_{\rightarrow}\mathbf{v};\boldsymbol{\mu}_{o}) = \sum_{k=0}^{\infty} \frac{2k+1}{2} \Sigma_{s}^{k}(\mathbf{v}'_{\rightarrow}\mathbf{v}) P_{k}(\boldsymbol{\mu}_{o}) \qquad (1.17)$$

e utilizando o teorema da adição para os polinômios de Legendre:

$$P_{\ell}(\mu_{0}) = P_{\ell}(\mu)P_{\ell}(\mu') + 2 \sum_{m=1}^{\ell} \frac{(\ell-m)!}{(\ell+m)!} P_{\ell}^{m}(\mu)P_{\ell}^{m}(\mu') \cos m (\phi-\phi')$$

onde $\phi \in \phi^1$ são os ângulos azimuteis de $\vec{\Omega} \in \vec{\Omega}^1$, $\in P_{\ell}^{\mathfrak{m}}(\mu) \in P_{\ell}^{\mathfrak{m}}(\mu')$ são polinômios associados de Legendre, tem-se: 9.

$$\frac{1}{2\pi} \int_{0}^{\infty} dv' \int_{4\pi} d\Omega' \Sigma_{g}(v' \rightarrow v; \mu_{0}) \Phi(x, v', \mu') \approx$$

$$= \int_{0}^{\infty} dv' \int_{2=0}^{\infty} \frac{22+1}{2} E_{g}^{\ell}(v + v) \int_{-1}^{+1} d\mu' P_{\ell}(\mu) P_{\ell}(\mu') \Phi(x, v', \mu') \qquad (1.18)$$

pois a integral em relação a d ϕ^1 da somatória na expressão para $P_{\ell}(\mu_0)$ é nula para os meios isotrópicos considerados.

A equação (1.13) fica portanto:

$$\mu \frac{\partial}{\partial x} \Phi(x,v,\mu) + \Sigma(v) \Phi(x,v,\mu) =$$

$$= \sum_{\ell=0}^{\infty} \frac{2\ell+1}{2} \int_{0}^{\infty} dv' \Sigma_{g}^{\ell}(v' \rightarrow v) P_{\ell}(\mu) \int_{-1}^{1} d\mu' P_{\ell}(\mu') \Phi(x, v', \mu') \qquad (1.19)$$

A somatória acima é usualmente truncada, mantendo-se o primeia ro termo-aproximação isotrópica - ou os dois primeiros têrmos - aproxima ção linear -.

Assim, no caso de meio homogêneo, isotrópico e espalhamento isotrópico, tem-se:

$$\Sigma_{s}^{\ell}(\mathbf{v}' + \mathbf{v}) = \delta_{\ell o} \Sigma_{s}^{o}(\mathbf{v}' + \mathbf{v}) \qquad (1.20)$$

e a equação (1.19) fica:

٦.

$$\mu \frac{\partial}{\partial x} \Phi(x, \mathbf{v}, \mu) + \Sigma(\mathbf{v}) \Phi(x, \mathbf{v}, \mu) = \frac{1}{2} \int_{0}^{\infty} d\mathbf{v} \int_{-1}^{1} d\mu \Sigma_{s}^{0}(\mathbf{v}' + \mathbf{v}) \Phi(x, \mathbf{v}', \mu') \quad (1.21)$$

2

Para o caso de espalhamento anisotrópico linear, consideram-se os dois primeiros têrmos da somatória que comparece em (1.18) e obtem-se:

$$\mu \frac{\partial}{\partial x} \Phi(\mathbf{x}, \mathbf{v}, \mu) + \Sigma(\mathbf{v}) \Phi(\mathbf{x}, \mathbf{v}, \mu) = \frac{1}{2} \int_{0}^{\infty} d\mathbf{v}' \int_{-1}^{1} d\mu' \Sigma_{\mathbf{s}}^{0} (\mathbf{v}' \rightarrow \mathbf{v}) \Phi(\mathbf{x}, \mathbf{v}', \mu') + \frac{3}{2} \mu f_{0}^{\infty} d\mathbf{v}' \int_{-1}^{1} d\mu' \mu' \Sigma_{\mathbf{s}}^{1} (\mathbf{v}' \rightarrow \mathbf{v}) \Phi(\mathbf{x}, \mathbf{v}', \mu') \qquad (1.22)$$

A dependência energética tanto de $\Phi(x,v,\mu)$ como das diversas secções de choque, foi considerada até agora através da velocidade escalar relativa v dos neutrons.

Nesta tese, entretanto, trabalharemos com a energia cinética do movimento relativo dos neutrons, E. A mudança de variável necessária para passar da variável v para a variável E é trivial, bastando apenas notar, no caso do núcleo de espalhamento, que se devecter:

$$\Sigma_{g}^{\sharp}(v' + v) dv = \Sigma_{g}^{\sharp}(E' + E) dE,$$

Obtêm-se, assim, as seguintes equações correspondentes a(119), (1.21) e (1.22):

$$\mu_{\partial x}^{3} \Phi(\mathbf{x}, \mathbf{E}, \mu) + \Sigma(\mathbf{E}) \Phi(\mathbf{x}, \mathbf{E}, \mu) = \sum_{k=0}^{\infty} \frac{2k+1}{2} \int_{0}^{\infty} d\mathbf{E} \left[\Sigma_{\mathbf{S}}^{\lambda}(\mathbf{E}^{\dagger} + \mathbf{E}) P_{\lambda}(\mu) \right]_{1}^{+1} d\mu \left[P_{\lambda}(\mu^{\dagger}) \Phi(\mathbf{x}, \mathbf{E}^{\dagger}, \mu^{\dagger}) - 1 \right]_{1}^{-1}$$

(1.23)

$$\mu \frac{\partial}{\partial x} \Phi(x, E, \mu) + \Sigma(E) \Phi(x, E, \mu) = \frac{1}{2} \int_{0}^{\infty} dE^{*} \int_{-1}^{+1} d\mu \Sigma_{s}^{0}(E^{*} \rightarrow E) \Phi(x, E^{*}, \mu^{*}) \qquad (1.24)$$

$$\mu \frac{\partial}{\partial x} \Phi(x, E, \mu) + \Sigma(E) \Phi(x, E, \mu) = \frac{1}{2} \int_{0}^{\infty} dE^{\dagger} \int_{0}^{+1} d\mu^{\dagger} \Sigma_{s}^{0}(E^{\dagger} + E) \Phi(x, E^{\dagger}, \mu^{\dagger}) + \frac{3}{2} \mu_{0}^{\infty} dE^{\dagger} \int_{-1}^{1} d\mu^{\dagger} \mu^{\dagger} \Sigma_{E}^{1}(E^{\dagger} + E) \Phi(x, E^{\dagger}, \mu^{\dagger}).$$
(1.25)

Finalmente, uma observação sobre o têrmo de fonte externa, que foi omitido na passagem de (1.12) para (1.13): notemos que a forma de tal têrmo é característica de cada problema e, em geral, a solução completa de um problema específico exigirã a determinação direta de uma solução particular da equação inhomogênea, ou seja, de (1.24) ou (1.25)com pletada com o têrmo de fonte adequado.

A equação básica que consideraremos com detalhe neste trabalho será a (1.24); mas esta especialização somente será feita no capítulo III. Na equação (1.19) aplicada a problemas de termalização, no caso geral, tem-se, tanto para $\Sigma(v)$ como para $\Sigma_g^0(v',v)$ funções bastante complexas. De fato, mesmo se se considerar uma situação ideal em que as secções microscópicas de choque são constantes, as formas para $\Sigma(v)$ e $\Sigma_g^0(v',v)$ são matemáticamente complexas. Esta complexidade é introduzida pela consideração do movimento das partículas (átomos ou moléculas) do meio (10-12).

Em consequência, a consideração de formas realistas para $\Sigma_{g}^{o}(v'+y)$ torna praticamente impossível se obter soluções exatas para a equação homogênea (1.24); e com maior razão para a equação geral(1.23).

A utilização de métodos aproximados é, portanto, imperativa.

Os métodos aproximados podem ser classificados nas seguintes categorias:

- a) métodos polínomiais
- b) métodos variacionais
- c) métodos de multi-grupo

Nos métodos polinomiais, (13-17) as dependências de v e de μ de $\Phi(x,v,\mu)$ de $\Sigma(v)$ e de $\Sigma_{s}^{0}(v'+v)$ são expressas através de expansões em polinômios ortogonais convenientes. Truncamentos das séries consideradas, tanto no desenvolvimento energético como no angular, fornecem sistemas finitos de equações algébricas acopladas cuja solução não oferece díficuldade especial, mesmo em computadores de porte razoável.

É claro que, com a consideração de um número finito de têrmos das séries, introduzimos aproximações cujos efeitos são matemàticamente difíceis de serem analisados. No entanto, considerações físicas,muitas vezes, permitem ter-se razoável certeza de que, em uma dada ordem de aproximação, as soluções aproximadas devem descrever com precisão aceitávelo comportamento do sistema físico considerado. O método que exporemos nesta tese se enquadra nesta categoria.

Nos métodos variacionais ^(14,18-20) são construidos funcionais que são estacionários em relação a sfastamentos do fluxo de neutrons de seu valor correto. Na maioria dos casos, êstes métodos têm sido utiliza dos para cálculo de determinadas grandezas físicas associadas a um dado problema e não para a obtenção de soluções analíticas aproximadas que descrevam a dependência espacial, energética e angular do fluxo de neutrons.

São métodos poderosos, que se prestam bem a processos de iter<u>a</u> ção, e que, desde que os funcionais adequados sejam encontrados, permitem obter resultados com alta precisão.

A extensão dos diversos métodos variacionais para casos gerais, apresenta dificuldades, de onde decorre que suas aplicações mais importantes são sempre a problemas específicos.

Finalmente, nos métodos de multi-grupo⁽¹⁾ o intervalo de energia no qual a solução da equação (1.24) é procurada, é dividido em um certo número de sub-intervalos. Em cada sub-intervalo, a utilização de valores médios adequados para as secções de choque permite se obter um sistema de equações integro-diferenciais acoptadas. A estrutura do sistema é tal que sua solução pode ser obtida utilizando cálculo digital eletrônico. É um método extensivamente usado, tendo sido aplicado mesmo a casos bi e tridimensionais. O número de sub-intervalos considerados depende da precisão, ou melhor, do detalhe, especialmente em energia,que se deseja para a solução e do tipo de variação com a energia das secções de choque que comparecem na equação básica⁽¹⁾. Grandes computadores são geralmente necessários, os tempos de cálculo são longos e, mais importan te, dificilmente os aspectos físicos dos problemas considerados podem ser analisados a partir das soluções numéricas obtidas.

1.4 - Finalidade deste trabalho

A motivação básica para se obter, de uma maneira tão completa quanto possível, soluções gerais da equação de transporte em geometria plana, utilizando consistentemente expansão em polinômios energéticos e angulares, método que indicaremos por PEA: polinomial energético-angular, repousa essencialmente nos seguintes fatos:

ζ

a) Na denominada zona de energia de termalização, o conhecimen to do espectro energético e espacial dos neutrons é da maior importância, tanto para uma análise e compreensão mais completa das experiências quan to para os cálculos precisos exigidos no projeto de reatores nucleares. O método que tem sido quase que exclusivamente utilizado para esta deter minação do espectro dos neutrons é o de "multi-grupo"⁽¹⁾.

Êste método, extremamente poderoso como já notamos, não fornece soluções analíticas gerais, não se prestando assim, facilmente, a aná lise de influência relativa dos diversos processos (Ísicos responsáveis pelas características de uma determinada solução.

Por outro lado, o método polinomial, em geral, permite a obten ção de soluções analíticas numa dada ordem de aproximação e, dentro do formalismo que desenvolveremos, permite, em princípio, a obtenção da par te denominada assintótica de soluções exatas quanto à dependência angular, através de um processo de passagem ao limite.

b) A obtenção de soluções aproximadas em geometria plana, através do método PEA, à primeira vista não teria sentido desde que, em trabalhos recentes Ferziger e Leonard⁽²¹⁾ obtiveram soluções exatas na dependência angular, para a mesma geometria. No entanto, duas observações se impõem:

I: o método PEA apresenta boas perspectivas de poder ser exten dido a outras geometrias, em especial a geometrias cilíndricas, da maior importância nos projetos de reatores nucleares, o que não parece ser pos sível com o método de Ferziger e Leonard;

II: a aplicação das soluções exatas de Ferziger e Leonard a problemas concretos⁽²²⁾, não é fácil; de fato, a imposição de condições de contôrmo, mesmo em problemas simples com geometria plana, torna necessário resolver um sistema de equações integrais do tipo de Fredholm. No método PEA, as condições de contôrmo correspondentes são satisfeitas através da solução de um sistema de equações algébricas lineares.

Parece-nos assim, que o estudo sistemático do mérodo PEA encon tra ampla justificativa, sendo nossa intenção explorar suas aplicações a vários problemas de interêsse de Física de Reatores. Pretendemos, em particular, concentrar nossos esforços na extensão do método a geometrias cilíndricas, dada a importância prática dos problemas al encontrados.

1.5 - Estrutura da Tese

A estrutura desta tese, baseada fundamentalmente na aplicação de um método polinomial para o tratamento da dependência energética, e no das esféricas harmônicas para o da dependência angular, é a seguinte.

No capítulo II, utilizando desenvolvimentos em séries de poli nômios da energia e angulares - método PEA -, colocaremos a equação homo gênea (1.23) em uma forma adequada para os tratamentos que serão apresen tados nos capítulos subsequentes.

No capítulo III, obteremos uma solução geral, numa dada ordem de aproximação, do conjunto básico de equações desenvolvido no capítulo II, na aproximação de espalhamento isotrópico.

No capítulo IV, analisaremos o comportamento da solução geral, aproximada, para espalhamento isotrópico, (obtida no capítulo III) quando a ordem de aproximação em esféricas harmônicas tende para o infinito, comparando-a com os resultados de Ferziger e Leonard, que são exatos quanto às dependências angular e espacial.

No capítulo V, apresentaremos algumas observações e conclusões sõbre o método REA; em especial serão citados alguns problemas deixados em aberto, bem como faremos algumas conjecturas sõbre o campo de aplicação do método que desenvolveremos.

No apêndice A-l apresentaremos um resumo dos trabalhos fundamentais de Ferziger e Leonard, especialmente o da referência⁽²²⁾, visando facilitar a compreensão das comparações apresentadas no capítulo IV. E, no apêndice A-2, será demonstrado que, para uma classe de problemas físicos, são reais os auto-valores v_s introduzidos no capítulo II. particular, concentrar nossos esforços na extensão do método a geometrias cilíndricas, dada a importância prática dos problemas al encontrados.

1.5 - Estrutura da Tese

A estrutura desta tese, baseada fundamentalmente na aplicação de um método polinomial para o tratamento da dependência energética, e no das esféricas harmônicas para o da dependência angular, é a seguinte.

No capítulo II, utilizando desenvolvimentos em séries de poli nômios da energia e angulares - método PEA -, colocaremos a equação homo gênea (1.23) em uma forma adequada para os tratamentos que serão apresen tados nos capítulos subsequentes.

No capítulo III, obteremos uma solução geral, numa dada ordem de aproximação, do conjunto básico de equações desenvolvido no capítulo II, na aproximação de espalhamento isotrópico.

No capítulo IV, analisaremos o comportamento da solução geral, aproximada, para espalhamento isotrópico, (obtida no capítulo III) quando a ordem de aproximação em esféricas harmônicas tende para o infinito, comparando-a com os resultados de Ferziger e Leonard, que são exatos quanto às dependências angular e espacial.

No capítulo V, apresentaremos algumas observações e conclusões sõbre o método REA; em especial serão citados alguns problemas deixados em aberto, bem como faremos algumas conjecturas sõbre o campo de aplicação do método que desenvolveremos.

No apêndice A-l apresentaremos um resumo dos trabalhos fundamentais de Ferziger e Leonard, especialmente o da referência⁽²²⁾, visando facilitar a compreensão das comparações apresentadas no capítulo IV. E, no apêndice A-2, será demonstrado que, para uma classe de problemas físicos, são reais os auto-valores v_s introduzidos no capítulo II.

<u>CAPÍTULO II</u>

O MÉTODO PEA: POLINOMIAL ENERGÉTICO E ANGULAR

2.1 - <u>O método polinomial para a dependência energética</u>

Consideramos a equação homogênea (1.23) para geometria plana, meio isotrópico com núcleo de espalhamento genérico:

 $\mu \frac{\partial}{\partial x} \Phi(x, E, \mu) + \Sigma(E) \Phi(x, E, \mu) =$

$$=\sum_{\ell=0}^{\infty} \frac{2\ell+1}{2} \int_{0}^{\infty} dE' \Sigma_{s}^{\ell} (E' \rightarrow E) P_{\ell}(\mu) \int_{-1}^{+1} d\mu' P_{\ell}(\mu') \phi(\mathbf{x}, E', \mu') \qquad (2.1)$$

Para aplicar o método polinomial para a dependência energética, é conveniente, como justificaremos no capítulo III, simetrizar antes os núcleos de espalhamento $\Sigma_{B}^{L}(E^{*}\rightarrow E)$; e, para facilitar a análise matemática, tomaremos o valor mínimo de $1/\Omega(E)$ como unidade de comprimento, tornando adimensionais as secções de choque em (2.1).

Considerando o núcleo de espalhamento $\Sigma_{s}(E^{1}\rightarrow E;\mu_{0})$, pode-se demonstrar ⁽²⁵⁾que é necessário se ter para todo núcleo de espalhamento f<u>i</u> sicamente aceitável:

$$M(E^{*})\Sigma_{s}(E^{*} \rightarrow E; \mu_{o}) \doteq M(E)\Sigma_{s}(E \rightarrow E^{*}; \mu_{o})$$
(2.2)

onde M(E)=Ee^{-E}; E = energia en unidades kT, com T a temperatura absoluta do meio e k a constante de Boltzmann (2.3)

Esta igualdade, que decorre do princípio de balanço detalha÷: do,^(24,25) assegura que, num meio infinito, sem absorção, é possível se estabelecer uma distribuição maxwelliana de equilíbrio à temperatura T.

Introduzamos uma função V(x,E,µ) tal que:

$$\phi(x, E, \mu) = \sqrt{M(E)}^{t} \cdot \Psi(x, E, \mu)$$
 (2.4)

A equação (1.13) após passar da variável y para a variável E, nos formece:

$$\mu \frac{\partial}{\partial \mathbf{x}} \Phi(\mathbf{x}, \mathbf{E}, \mu) + \Sigma(\mathbf{E}) \Phi(\mathbf{x}, \mathbf{E}, \mu) =$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\mathbf{E}^{\dagger} \int_{\mathbf{h}_{\pi}} d\Omega^{\dagger} \Sigma_{\mathbf{g}}(\mathbf{E}^{\dagger} + \mathbf{E}; \mu_{0}) \Phi(\mathbf{x}, \mathbf{E}^{\dagger}, \mu) \qquad (2.5)$$

Levando (2.4) em (2.5) e dividindo ambos os membros por $\sqrt{M(E)}$:

$$\mu \frac{\partial}{\partial x} \Psi(x, E, \mu) + \Sigma(E) \Psi(x, E, \mu) =$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} dE^{\dagger} \int_{4\pi}^{\pi} d\Omega^{\dagger} \sqrt{\frac{M(E^{\dagger})^{\dagger}}{M(E)}} \cdot \Sigma_{s}(E^{\dagger} + E; \mu_{o}) \Psi(x, E^{\dagger}, \mu^{\dagger}) \qquad (2.6)$$

ou ainda:

.

-

.

-

. .

4

$$\mu \frac{\partial}{\partial \mathbf{x}} \Psi(\mathbf{x}, \mathbf{E}, \mu) + \Sigma(\mathbf{E}) \Psi(\mathbf{x}, \mathbf{E}, \mu) =$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\mathbf{E}^{*} \int_{-1}^{+1} d\mu^{*} \int_{0}^{2\pi} d\phi^{*} \sqrt{\frac{\mathbf{M}(\mathbf{E}^{*})}{\mathbf{M}(\mathbf{E})}} \circ \Sigma_{\mathbf{S}}(\mathbf{E}^{*} \rightarrow \mathbf{E}; \mu_{0}) \Psi(\mathbf{x}, \mathbf{E}^{*}, \mu^{*})$$
(2.7)

É facil se ver que o novo núcleo de espalhamento $\Sigma_{oo}(E^{1} \rightarrow E; \mu_{0}) = \sqrt{\underline{N(E^{1})}} \quad \ \ \Sigma_{p}(D)$

$$S_{SS}(E^{1} \rightarrow E; \mu_{0}) = \sqrt{\frac{M(E^{1})}{M(E)}} \circ \Sigma_{B}(E^{1} \rightarrow E; \mu_{0})$$
(2.8)

sera simétrico se ∑_s(E'→E;µ₀) satisfizer (2.2)

Desenvolvendo $E_{SS}(E' \rightarrow E; \mu_0)$ em série de polinômios de Legendre em μ_0 , uti lizando o teorema da adição, obtemos de (2.7) a equação seguinte, corres pondente a (1.23)

$$\mu \frac{\partial}{\partial x} \Psi(x, E, \mu) + \Sigma(E) \Psi(x, E, \mu) =$$

$$= \sum_{k=0}^{\infty} \frac{2k+1}{2} \int_{0}^{\infty} dE^{\dagger} \Sigma_{ss}^{k}(E^{\dagger} \rightarrow E) P_{k}(\mu) \int_{-1}^{+1} d\mu' P_{k}(\mu') \Psi(x, E^{\dagger}, \mu') \qquad (2.9)$$

•

com $\Sigma_{se}^{l}(E^{t} \rightarrow E)$ núcleos simétricos satisfazendo a:

$$\sum_{s=1}^{k} (E^{2} \rightarrow E) = \sum_{s=1}^{k} (E^{2} \rightarrow E^{1})$$
 (2.10)

É útil notar que a expressão para o fluxo $\Phi(x,E,\mu)$ será obtida, a partir de $\Psi(x,E,\mu)$, utilizando a (2.4).

Consideremos agora un conjunto completo e ortonormal de polin<u>ô</u>mios na energia, $g_i(E)$:

$$\int_{0}^{\infty} dE |g_{j}(E)|_{B_{k}}(E) = \delta_{jk}$$
(2.11)

$$\sum_{j=0}^{\infty} g_j(E) g_j(E^{\gamma}) = \delta(E - E^{\gamma})$$
(2.12)

Desenvolvendo $\Psi(x, E, \mu)$ em série de polinômios $g_{j}(E)$:

· *•*

levando em (2.9), multiplicando ambos os membros por g_k (E) e integrando em relação a E entre o e m, obtemos, utilizando (2.11):

$$\sum_{j=0}^{\infty} \frac{2\ell+1}{2} \sum_{j=0}^{\infty} \int_{0}^{\omega^{j}} dEg_{k}(E) \int_{0}^{\omega} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E') \cdot P_{\ell}(\mu) \int_{-1}^{1} P_{\ell}(\mu') f_{j}(x, \mu') \int_{-1}^{0} dE' \Sigma_{ss}^{\ell}(E' + E)g_{j}(E' + E$$

Pondo:

¢.

$$v_{kj} = \int_0^\infty dE g_k(E) \Sigma(E) g_j(E)$$
 (2.15)

$$\alpha_{kj}^{2} = \int_{0}^{\infty} dE \int_{0}^{\infty} dE' g_{k}(E) \Sigma_{ss}^{2}(E' + E) g_{j}(E'), \qquad (2.16)$$

ve-se logo que:

۰,

$$V_{kj} = V_{jk}$$
(2.17)

com $\mathcal{E}_{59}^{\&}(E^{1}\rightarrow E)$ núcleos simétricos satisfazendo a:

$$\cdot \cdot \Sigma_{SS}^{\ell}(E^{\dagger} \rightarrow E) - = \Sigma_{SS}^{\ell}(E^{\dagger} E^{\dagger})$$
 (2.10)

É útil notar que a expressão para o fluxo $\Phi(x,E,\mu)$ será obtida, a partir de $Y(x,E,\mu)$, utilizando a (2.4).

Consideremos agora um conjunto completo e ortonormal de polin<u>o</u> mios na energía, g_i(E);

$$\int_{0}^{\infty} dE g_{j}(E) g_{k}(E) = \delta_{jk}$$
(2.11)

$$\sum_{j=0}^{\infty} g_{j}(E) g_{j}(E') = \delta(E - E')$$
(2.12)

Desenvolvendo $\Psi(x,E,\mu)$ em série de polinômios $g_j(E)$:

- . .

$$\Psi(x, E, \mu) = \sum_{j=0}^{\infty} f_{j}(x, \mu)_{\xi j}(E)$$
 (2.13)

levando em (2.9), multiplicando ambos os membros por g_k (E) e integrando em relação a E entre o e ∞, obtemos, utilizando (2.11):

$$\sum_{j=0}^{\infty} \mu \frac{\partial}{\partial x} f_j(x,\mu) + \sum_{j=0}^{\infty} f_j(x,\mu) \cdot \int_0^{\infty} dE g_k(E) \Sigma(E) g_j(E) =$$
$$= \sum_{k=0}^{\infty} \frac{2k+1}{2} \sum_{j=0}^{\infty} \int_0^{\infty} dE g_k(E) \int_0^{\infty} dE^* \Sigma_{ss}^k(E^* \to E) g_j(E^*) \cdot P_k(\mu) \int_{-1}^{1} P_k(\mu^*) f_j(x,\mu^*) (2.14)$$

Pondo:

$$V_{kj} = \int_{0}^{\infty} dE g_{k}(E) E(E) g_{j}(E)$$
 (2.15)

$$\alpha_{kj}^{\ell} = \int_{0}^{\infty} dE \int_{0}^{\infty} dE' g_{k}(E) E_{ss}^{\ell}(E' \neq E) g_{j}(E'), \qquad (2.16)$$

vê-se logo que:

$$\mathbf{v}_{kj} = \mathbf{v}_{jk} \tag{2.17}$$

。19 。

$$\alpha_{kj}^2 = \alpha_{jk}^2 \qquad (2.18)$$

A igualdade (2.17) é óbvia, enquanto que a (2.18) decorre do caráter simétrico de $\Sigma_{-\infty}^{\ell}$ (E'+E).

A
$$(2.14)$$
 se escreve, utilizando (2.15) e (2.16)

$$\sum_{j=0}^{\infty} \mu \frac{\partial}{\partial x} f_{j}(x,\mu) \delta_{jk} + \sum_{j=0}^{\infty} V_{kj} f_{j}(x,\mu) =$$

$$= \sum_{k=0}^{\infty} \frac{2k+1}{2} P_{k}(\mu) \int_{-1}^{1} d\mu' P_{k}(\mu') \sum_{j=0}^{\infty} \alpha_{kj}^{2} f_{j}(x,\mu') \qquad (2.19)$$

Se agora truncarmos o desenvolvimento (2.13), mantendo somente os primeiros (L+1) termos, obteremos uma aproximação para a dependência energética de Y(x,E,u), aproximação esta que denominaremos "aproximação de ordem L".

No momento, tal truncamento é arbitrário. Mas, em problemas es pecíficos, há, às vezes, argumentos físicos que nos levam a esperar que um valor razoàvelmente pequeno para L forneça soluções que descrevam com boa aproximação os fenômenos físicos reais.

Na aproximação de ordem L, a (2,19) fica:

$$\sum_{j=0}^{L} \mu \frac{\partial}{\partial x} f_{j}(x,\mu) \delta_{jk} + \sum_{j=0}^{L} \nabla_{kj} f_{j}(x,\mu) =$$

$$= \sum_{\ell=0}^{\infty} \frac{2\ell+1}{2} P_{\ell}(\mu) \int_{-1}^{1} d\mu' P_{\ell}(\mu') \sum_{j=0}^{L} \alpha_{kj}^{\ell} f_{j}(x,\mu'), \qquad (2.20)$$

 $\operatorname{com} k \doteq 0, 1, \ldots L_{\circ}$

Finalmente, definindo as seguintes matrizes:

[V]→ matriz quadrada, de ordem (L+1),simétrica, de elementos

 (α^{ℓ}) + matriz quadrada, de ordem (L+1), simétrica, de elementos $\alpha^{\ell}_{k_1}$;

(I) \rightarrow matriz identidade, de ordem (L+1) de elementos δ_{kj} ; e um vetor (matriz de uma coluna)

 $f(x,\mu) \rightarrow vetor$ (matriz coluna) de ordem (L+1) de elementos $f_1(x,\mu)$, podemos escrever a (2.20) sob a forma matricial seguinte:

$$\mu \frac{\partial}{\partial x} \left| f(x, \mu) \right\rangle + \left(V \right) \left| f(x, \mu) \right\rangle =$$

$$= \sum_{k=0}^{\infty} \frac{2k+1}{2} P_{k}(\mu) \int_{1}^{\frac{1}{2}} d\mu' P_{k}(\mu') \left(\alpha^{k}\right) \left[f(x,\mu')\right]$$
(2.21)

A utilização do desenvolvimento em polinômios da energia permitiu-nos, assim, substituir a equação integro-diferencial (2.9) pelo sistema (2.21) de (L+1) equações, ainda integro-diferenciais, mas já independentes da energia.

Notemos desde já que a presença das matrizes não diagonais (V)e (α^{L}) acopla as diversas componentes do vetor $|f(x,\mu)\rangle$. E, certamente, a obtenção de soluções para (2.21) será facilitada se um desacoplamento total ou parcial for conseguido; e se o sistema de equações integro-dife renciais puder ser transformado em um sistema de equações algébricas. Pa ra o caso de espalhamento isotrópico, a (2.21) foi considerada por Ferzi ger e Leonard⁽²¹⁾ que obtiveram uma solução exata numa dada ordem de aproximação energética. No apêndice A-l apresentamos um resumo dos traba lhos fundamentais daqueles autores, pelas razões jã indicadas nos itens 1.4 e 1.5.

2.2 - O método das esféricas harmônicas (polinômios angulares)

2 N

A transformação do sistema Integro-diferencial (2.21) em um sistema de equações diferenciais, pode ser conseguido utilizando-se um desenvolvimento de $f_j(x,u)$ em uma série de polinômios de Legendre na variável angular:

$$f_{j}(x,\mu) = \sum_{m=0}^{\infty} \frac{2m+1}{2} A_{j}^{m}(x) P_{m}(\mu)$$
 (2.22)

άu

$$|f(\mathbf{x},\boldsymbol{\mu})\rangle \approx \sum_{m=0}^{\infty} \frac{2m+1}{2} P_{m}(\boldsymbol{\mu}) |A^{m}(\mathbf{x})\rangle \qquad (2.23)$$

onde cada $|A^{m}(x)\rangle$ (m=0,1,2,...,m) é uma matriz coluna de (L+1) elementos $A^{m}_{j}(x)$ e os polinômios de Legendre são normalizados de modo que;

$$\int_{-1}^{1} F_{n}(\mu) F_{m}(\nu) = \frac{2}{2m+1} \delta_{nm}$$
 (2.24)

Levando (2.23) em (2.21), multiplicando ambos os membros por $P_n(\mu)$ e integrando em relação a μ , obtemos:

$$\begin{split} & \sum_{m=0}^{\infty} \frac{\partial}{\partial x} |A^{m}(x) > \frac{2m+1}{2} \int_{-1}^{1} P_{n}(\mu) \cdot \mu_{*} P_{m}(\mu) d\mu + \\ & + \sum_{m=0}^{\infty} \{V\} |A^{m}(x) > \frac{2m+1}{2} \int_{-1}^{1} P_{n}(\mu) P_{m}(\mu) d\mu = \\ & = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \{\alpha^{k}\} |A^{m}(x) > \frac{2k+1}{2} \cdot \frac{2m+1}{2} \int_{-1}^{1} d\mu P_{n}(\mu) P_{k}(\mu) \int_{-1}^{1} d\mu P_{k}(\mu) P_{m}(\mu) (2.25) \end{split}$$

Utilizando (2.24), o segundo membro de (2.25) se escreve:

$$\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} (\alpha^{k}) | A^{m}(x) > \delta_{kn} \delta_{km} = (\alpha^{n}) | A^{n}(x) > (2, 26)$$

DISTITUTO DE ENERGIA ATOMICA

O primeiro membro será simplificado utilizando ainda (2.24) e a relação de recorrência entre os poli<u>nômios-de-Legendre:-----</u>

$$(n+1)P_{n+1}(\mu) + nP_{n+1}(\mu) = (2n+1)\mu P_n(\mu).$$
 (2.27)

Obtemos:

$$\frac{2m+1}{2} \int_{1}^{1} P_{n}(\mu) \cdot \mu \cdot P_{m}(\mu) d\mu \approx \frac{2m+1}{2} \cdot \frac{1}{2n+1} \left[(n+1) \int_{1}^{1} P_{n+1}(\mu) P_{m}(\mu) d\mu + \frac{1}{2} + n \int_{-1}^{1} P_{n-1}(\mu) P_{m}(\mu) d\mu \right]$$
(2.28)

$$\frac{2m+1}{2} \int_{1}^{1} P_{n}(\mu) \mu P_{m}(\mu) d\mu = \frac{1}{2n+1} \left[(n+1) \cdot \delta_{n+1,m} + n \delta_{n-1,m} \right]$$
(2.29)

$$\frac{2m+1}{2} \int_{-1}^{1} P_{n}(\mu) P_{m}(\mu) d\mu \approx \delta_{n,m} \qquad (2.30)$$

A (2.25) se escreve então:

$$\sum_{m=0}^{\infty} \frac{\partial}{\partial x} [A^{m}(x) > \frac{1}{2n+1} [(n+1)\delta_{n+1,m} + n\delta_{n-1,m}] + \sum_{m=0}^{\infty} [V] |A^{m}(x) > \delta_{n,m} - (q^{n}) |A^{n}(x) > ; (n=0,1,\dots,\infty)$$
(2.31)

e resulta o seguinte sistema de un número infinito de equações diferenciais acopladas, equivalente ao sistema de equações integro-diferenciais (2.21):

$$(n+1)^{\frac{\partial}{\partial x}} |A^{n+1}(x)\rangle + n \frac{\partial}{\partial x} |A^{n-1}(x)\rangle + (2n+1) (V) |A^{n}(x)\rangle =$$

= $(2n+1) (\alpha^{n}) |\dot{A}^{n}(x)\rangle$; $(n=0,1,...,\infty)$, (2.32)

Por analogia com o que se faz no método das esféricas harmônicas no caso mono-energético⁽¹⁾, substituimos agora, na denominada aproxi mação de ordem N, o sistema (2.32), com um número infinito de equações, $\frac{1}{2}$ por un sistema obtido mantendo as (N+1) primeiras equações de (2.32)e ao mesmo tempo ignorando tanto os $|\Lambda^n(x)\rangle$ para os quais nN como as demais equações. $|A^n| \ll N$

Obtemos,assim:

$$(n+1) \frac{\partial}{\partial x} |A^{n+1}(x)\rangle + n \frac{\partial}{\partial x} |A^{n-1}(x)\rangle + (2n+1) \langle V \rangle |A^{n}(x)\rangle =$$

$$= (2n+1) \{\alpha^{n}\} |A^{n}(x)\rangle (n=0,1,\ldots,N-1);$$

$$N \frac{\partial}{\partial x} |A^{N-1}(x)\rangle + (2N+1) \langle V \rangle |A^{N}(x)\rangle = (2N+1) \{\alpha^{N}\} |A^{N}(x)\rangle$$

$$(2.33)$$

Finalmente, considerando a invariança translacional do sistema, ponhamos, tenta ivamente:

$$|\Lambda^{n}(\mathbf{x})\rangle = e^{-\mathbf{x}/\nu}|\Lambda^{n}(\nu)\rangle, \qquad (2.34)$$

O sistema (2.33) fornece incdiatamente, o seguinte sistema basico de equações matriciais algébricas:

$$(n+1) |A^{n+1}(v)\rangle + n |A^{n-1}(v)\rangle - (2n+1)v [V] |A^{n}(v)\rangle =$$

$$= -v(2n+1) (\alpha^{n}) |A^{n}(v)\rangle ; (n=0,1,...,N-1) ;$$

$$N |A^{N-1}(v)\rangle - (2N+1)v [V] |A^{N}(v)\rangle = -v(2N+1) (\alpha^{N}) |A^{N}(v)\rangle_{a}$$

$$(2.35)$$

O desenvolvimento sucessivo da dependência energética em uma série de polinômios de Legendre $P_m(\mu)$ truncada com (N+1) têrmos, juntamente com o ansatz (2.34), forneceu-nos, assim, o sistema homogêneo (2.35) de (N+1) equações matriciais algébricas, acopladas pela matriz (V)e pelas (N+1) matrizes (α^n).

O sistema (2.35) tem, agora, uma estrutura análoga à do encon-

trado quando se aplica, para obter a solução de (2.1), o método de multi-grupo energético associado ao das esféricas harmônicas, ou seja, a de nominada "aproximação de multi-grupo - P_N" ⁽²⁶⁾.

Formalmente, a solução do sistema (2.35) pode ser obtida; mas a presença das matrizes não diagonais (V) e (α^n) tem duas consequências importantes. A primeira se refere à ordem do sistema obtido, para cuja solução será necessário se determinar as raizes de un determinante de or dem (L+1) (N+1). Assim, devemos calcular {(L+1) (N+1)}²elementos e arma zená-los ua memória de um computador.

Como exemplo, tomemos a aproximação L=4, N=4; o número de elementos será 625; e na aproximação L=4, N=9 tal número já seria 2500, com dificuldades computacionais importantes.

Situação análoga se apresenta no método de multi-grupo- P_N , mas um desacoplamento parcial é obtido ao caráter diagonal da matriz correspondente à (V) do sistema (2.35).

A segunda consequência importante da não diagonalização de (V)e (a^n) é que a solução formal que se obtem é tal que a *e*nálise da passagem ao limite quando N+ • é extremamente difícil de ser feita.

Estas dificuldades foram, até agora, impecilhos sérios na exploração ampla do método PEA. E, como foi indicado, a raiz de tais dif<u>i</u> culdades reside préclipuamente no caráter não diagonal das matrizes (V) e (a^n) .

A parte central desta tese repousa no reconhecimento desta situação; e na remoção das dificuldades apontadas através do emprêgo de uma transformação de similitude que diagonaliza (V), transformação esta introduzida por Ferziger e Leonard em seus trabalhos básicos já citados ⁽²¹⁾ (vide Apêndice A-1). Em particular, após tal transformação, a estrutura do sistema obtido a partir de (2.35), tornar-se-á idêntica à do que comparece no método multi-grupo- P_N ^(26,27).

A diagonalização simultânea de (V) e das (α^n) , preservando ain da as matrizes diagonais identidade (I) que comparecem em (2.35), não é possível. A escolha da diagonalização de (V) é óbvia, pois, no caso geral, há (N+1) matrizes (α^n) e so seria possível diagonalizar uma delas,

"_.24 ,

mantendo as (I) como tais.

Sendo (V) uma matriz simétrica, existirá uma matriz ortogonal (S) tal que a transformação de similitude

$$(s)^{-1} (v) (s) = (v)$$
 (2.36)

fornece uma matriz (U) diagonal. E o caráter ortogonal de (S) assegura ainda que (I) seja preservada e que a matriz simétrica (a^n) seja transformada, através de

$$(s)^{-1} (\alpha^n) (s) = (\gamma^n)$$
 (2.37)

em uma matriz (γ^n) também simétrica.

Definindo novos vetores $|B^n(v)\rangle$, através de

$$(S)^{-1} | \Lambda^{n}(v) \rangle = | B^{n}(v) \rangle (n=0,1,\dots,N), (2.38)$$

o sístema básico (2.35) se transforma em:

$$(n+1) |B^{n+1}(v)\rangle + n |B^{n-1}(v)\rangle - v(2n+1) (U) |B^{n}(v)\rangle =$$

$$= -v(2n+1) (\gamma^{n}) |B^{n}(v)\rangle (n=0,1,...,N-1)$$

$$N|B^{N-1}(v)\rangle - v(2N+1) (U) |B^{N}(v)\rangle = -v(2N+1) (\gamma^{N}) |B^{N}(v)\rangle, \qquad (2.39)$$

Como, agora, (U) é diagonal, a estrutura dêste sistema é idêntica à do que comparece no método de multi-grupo-P_N, estabelecendo assim uma ligação formal entre tal método e o polinomial energético associado ao das esféricas harmônicas.

No capítulo seguinte vamos apresentar, com certo detalhe, a solução de (2.39) para o caso mais simples de espalhamento isotrópico; o caso de espalhamento anisotrópico linear poderia ser tratado, sem dificuidade, utilizando um método geral, desenvolvido por Travelli ⁽²⁷⁾.

. . . 26 .

A finalidade da obtenção completa da solução aproximada de (2.39), no caso de espaihamento isotrópico, é a de compará-la com a solu ção obtida por Ferziger e Leonard, (21) utilizando o método polinomial truncado para a dependência energética mas tratando de maneira exata a dependência angular de $9(x,E,\mu)$, conforme está detalhado no Apêndice A-L Esta comparação fornecer-nos-á alguns resultados interessantes aos quais referir-nos-emos no capítulo IV.

SOLUÇÃO GERAL, NO METODO PEA, PARA O CASO DE GEOMETRIA PLANA E ESPALHAMENTO ISOTRÓPICO

3.1 - Sistema básico de equações matriciais algébricas

Consideremos o sistema básico (2,39) de equações matriciais algébricas, obtido pela aplicação do método polinomial energético e de esféricas harmônicas angular - método PEA -, ao caso de geometria plana:

$$(n+1) | B^{n+1}(v) > +n | B^{n-1}(v) > -v (2n+1) \{U\} | B^{n}(v) > =$$

= -v(2n+1) $(\gamma^{n}) | B^{n}(v) > (n=0,1,...,N-1);$ (2.39)
N|B^{N-1}(v) > - v(2N+1) $\{U\} | B^{N}(v) > = -v, ?N+1\} \{\gamma^{N}\} | B^{N}(v) > .$

Da equação (2.16) resulta que, se o núcleo de espalhamento for isotrópico, (α^2) será da forma:

 $\left(\alpha^{\hat{z}}\right)_{i} = \left(\alpha^{\hat{o}}\right) \delta_{\hat{z}_{\hat{o}}}$ (3.1)

ou seja, somente as matrizes (α^0) e (γ^0) terão elementos diferentes de zero.

O sistema (2.39) se reduz, assim, ao seguinte:

$$(n+1) |B^{n+1}(v)\rangle + n |B^{n-1}(v)\rangle - v (2n+1) \{U\} |B^{n}(v)\rangle =$$

$$= -v (\gamma^{0}) |B^{0}(v)\rangle_{0} \delta_{n0} \quad (n=0,1,\dots,N-1);$$

$$N |B^{N-1}(v)\rangle - v (2N+1) \{U\} |B^{N}(v)\rangle = 0$$

$$(3.2)$$

A isotropia do núcleo de espalhamento introduz um acoplamento

unicamente entre as componentes do vetor $|B^{\circ}(v)\rangle$; as componentes dos demais vetores $|B^{n}(v)\rangle$ (n=1,2,...,N) não são acopladas entre si, dado o ca rater diagonal da matriz (U) e ao fato de serem matrizes nulas as (α^{n}) para n>o.

O parâmetro y - arbitrário até o momento - será determinado pela condição de o sistema homogêneo (3.2) admitir soluções não trivizis. Isto é, pela condição de anulamento do determinante $\Delta(y)$ dos coeficientes do sistema considerado.

Tal determinante será de ordem {(L+1), (N+1)} e da forma;

onde $\Delta_{1}^{L}(v) \in D_{1}^{L}$ são determinantes de ordem (L+1) definidos por: $\Delta_{1}^{L}(v) = || (21+1)((v\gamma^{1}) - (v0))||$ $D_{1}^{L} = || (1) ||$ ou seja, $\Delta_{\underline{1}}^{L}(v)$ é o determinante da matriz guadrada (21+1)($(v\gamma^{1})-(vU)$) e $D_{\underline{1}}^{L}$ é o determinante da matriz diagonal ($\underline{1}$).

As raizes da equação:

$$\Delta(v) = 0, \qquad (3.3)$$

serão os ν permitidos, e com êles se poderia construír a solução geral de (3.2).

Mas, tanto sob os pontos de vista computacional e de possibilidade de análise do comportamento da solução quando N+**, quase nada teriamos ganho com a diagonalização de (V). De fato, apesar de um número significativo de elementos de $\Delta(v)$ serem nulos, continuariamos a ter que armazenar na memoria do computador {(L+1) (N+1)}² valores; e os resultados continuariam sendo obtidos sob uma forma que dificilmente se prestaria à análise de seu comportamento quando N+*.

Há, no entanto, dois métodos de obtenção de uma solução geral para (3.2) que apresentam vantagens computacionais significativas quando comparados com o método direto acima esquematizado, e que fornecem resul tados que permitem a análise do comportamento da solução e dos valores característicos quando N+% São:

> a) o método de Kofink⁽²⁸⁾, extendido ao caso poli-energético; b) o método de Travelli⁽²⁷⁾.

Notemos que a aplicabilidade eficaz de um ou outro método é decorrência da estrutura matemática do sístema (3.2) e, em particular,do caráter diagonal de (U). Esta observação, em relação ao método de Kofink, será tornada mais clara no ítem 3.3.

Nesta tese, adotaremos, para obter a solução geral de (3.2), uma extensão, por nos desenvolvida, do método de Kofink.

Poderíamos ter adotado o método de Travelli que, sendo mais geral que o de Kofink, permite o tratamento de casos de espalhamento não isotrópico de qualquer ordem. Não o fizemos por duas razões:

 a extensão do método de Kofink é simples, para o caso isotrópico que estamos tratando.

11) somente na fase de redação desta tese é que tomamos conhe-

cimento do trabalho completo de Travelli⁽²⁷⁾, de difícil obtenção.

3.2 - <u>Solução geral do sistema básico no caso isotrópico</u>

O sistema básico que temos que resolver é o constituído pelas (N+1) equações matriciais (3.2).

Por analogia com o caso mono-energético consideremos um siste ma matricial, ainda de (N+1) equações nas de (N+2) incógnitas, obtido de (3.2) após acrescentar, à última equação, o têrmo (N+1) $|B^{N+1}(v)\rangle$ que havíamos omitido na aproximação de ordem N; ou seja, consideremos o sistema:

$$(n+1) |B^{n+1}(v) > + n |B^{n-1}(v) > - v(2n+1) (U) |B^{n}(v) > = = -v(\gamma^{0}) |B^{0}(v) > .\delta_{no}, \text{ para } n=0,1,...,N-1,N.$$
(3.4)

Notemos que se

$$|\mathbf{B}^{N+1}(\mathbf{v})\rangle = 0 \tag{3.5}$$

o sistema (3.4) se torna identico ao (3.2).

Se pudermos efetivamente construir, sem restrição sobre v,uma solução não trivial para (3.4), então a equação (3.5) determinará os v para os quais o sistema original (3.2) admite soluções não triviais. A condição (3.5) será, assim, equivalente à equação (3.3), em estreita ana logia com o caso mono-energético.

Para construir una solução não trivial para o sistema (3.4) adotaremos, como já explicamos, una extensão do método de Kofink desenvolvido para o caso mono-energético.

Para isso, consideremos os polinômios de Legendre de primeira espécie $P_n(x)$ e as funções de Legendre de segunda espécie $Q_n(x)^{(29)}$. Ambos satisfazem à seguinte relação de recorrência:

$$(n+1)K_{n+1}(x)+nK_{n-1}(x) - (2n+1) \times K_n(x) = 0$$
 (3.6)

. 31 .

onde $K_n(x)$ indica $P_n(x)$ ou $Q_n(x)$. Notemos que esta relação de recorrência tem uma estrutura similar à satisfeita pelas componentes do vetor $[B_n^n(v)>$, para n=1,2 ... N.

Consideremos ainda os polinômios $W_n(x)$ constituidos pela parte não singular das $Q_n(x)$. A relação entre $W_n(x)$, $P_n(x)$ e $Q_n(x)$ é ⁽²⁹⁾:

$$W_{n-1}(x) = P_n(x)Q_0(x) - Q_n(x)$$
 (3.7)

com

$$W_{-1}(x) = 0$$
 (3.8)

Os polinômios W_n(x) satisfazem à seguinte relação de recorrê<u>n</u>

$$(n+1)W_n(x) + nW_{n-2}(x) - (2n+1)x W_{n-1}(x) = 0$$
 (3.9)

consequência imediata de (3.7) e (3.6).

Notemos, inicialmente, que, para n≃1,2 ... N, o.sistema (3.4) é identicamente satisfeito por um |B^R(v)> da forma:

$$|B^{n}(v)\rangle = P_{n}(\{vU\})|A\rangle - W_{n-1}(\{vU\})|B\rangle$$
 (3.10)

com $|A\rangle$ e $|B\rangle$ vetores arbitrários independentes de n, de v ou dos elementos de $\{U\}$.

A presença da matriz (VU) como argumento dos polinômios em (3.10) não introduz dificuldade alguma e a execução, em álgebra matricial, das operações aí indicadas formalmente, também é perfeitamente unívo ca. Poderá, é verdade, haver eventuais dificuldades com operações matri ciais se considerarmos a definição (3.7) de $W_{n-1}(x)$.

Para evitar estas eventuais dificuldades podemos considerar os $W_n(x)$ definidos a partir de:

cía

.
. 32 .

$$W_{n-1}(x) = \sum_{m=1}^{n} \frac{1}{m} P_{m-1}(x) P_{n-m}(x) \quad \text{para } n \ge 1$$

$$W_{-1}(x) = 0 \quad \text{para } n = 0$$
(3.11)

definição esta que é equivalente à (3.7)⁽²⁹⁾ para x número real.

Levando (3.10) no sistema (3.4), teremos como consequência de (3.6) e (3.9) para n=2,3 ... N-1,N:

$$\left[(n+1) P_{n+1}((vU)) | A > + n P_{n-1}((vU)) | A > - (2n+1) (vU) P_{n}((vU)) | A > \right] = - \left[(n+1) W_{n}((vU)) | B > + n W_{n-2}((vU)) | B > - (2n+1) (vU) W_{n-1}((vU)) | B > \right] = 0 \quad (3.12)$$

A arbitrariedade de escolha de $|A\rangle$ e $|B\rangle$ será utilizada para que (3.10) satisfaça a (3.4) para n=0 e para n=1.

De (3.4) e (3.10) obtemos, para n=0:

$$P_{1}(\langle vU \rangle) | A \rangle - \left[(vU) + (v\gamma^{\circ}) \right] P_{0}(\langle vU \rangle) | A \rangle +$$

$$+ W_{O}((\vee U)) |B\rangle = [(\vee U) + (\vee \gamma^{O})] W_{-1}((\vee U)) |B\rangle = 0 \qquad (3.13)$$

Ou como:

.

$$P_{1}((vU)) = (vU)$$

$$P_{0}((vU)) = (I)$$

$$W_{-1}((vU)) = (I)$$

$$W_{0}((vU)) = (I)$$

a (3.13) fica:

$$V(\mathbf{U}) | \mathbf{A} = [(\mathbf{v}\mathbf{U}) + (\mathbf{v}\gamma^{\circ})] | \mathbf{A} \ge + | \mathbf{B} \ge = 0$$
(3.15)

$$B^{2}=\nu\left(\gamma^{0}\right)|A^{2}$$
(3.16)

Considerando a equação para n=1, do sistema (3.4) e utilizando a (3.10)

$$\left[2P_{2}((\vee U))|_{A} + P_{0}((\vee U))|_{A} = 3(\vee U)P_{1}((\vee U))|_{A}\right] = 0$$

$$-\left[2W_{1}((\vee U))|_{B} - W_{-1}((\vee U))|_{B} - 3(\vee U)W_{0}((\vee U))|_{B}\right] = 0 \quad (3.17)$$

As relações de recorrência (3.6) e (3.9) satisfeitas por $P_n(x)$ e $W_n(x)$ asseguram que (3.17) será identicamente satisfeita. Assim, um dos vetores, $|A^{>}$ por exemplo, é arbitrário, enquanto que o segundo $|B^{>}$ é determinado por (3.16).

Fica, assim, provado que:

$$|B^{n}(v)\rangle = \left[P_{n}(\langle vU \rangle) - W_{n-1}(\langle vU \rangle) \langle vY^{o} \rangle\right] |A\rangle, \qquad (3.18)$$

é solução de (3.4), com |A> arbitrário para todo n=0,1,...,N.

Notemos que, como (U) e (γ^0) são matrizes que, em geral, não comutam entre si, a ordem de $W_{n-1}((\nu U))$ e $(\nu \gamma^0)$ em (3.18) deve ser observada com cuidado.

Para n=0, a (3.18) fornece

$$\mathbb{E}^{\circ}(\mathbf{v}) \geq \mathbb{A}^{\times} \qquad (3.19)$$

ou seja, o vetor arbitrário $|A\rangle$ coincide com $|B^{\circ}(v)\rangle$. Em outras palavras, a escolha da particular combinação linear (3.10) equivale a tomar, como vetor arbitrário, o vetor $|B^{\circ}(v)\rangle$, escolha esta que, fisicamente, é interessante. Sem entrar em detalhes, podemos adiantar que a arbitrarieda de de $|B^{O}(v)\rangle$ permite, nas aplicações específicas, satisfazer condições físicas relacionadas com o fluxo escalar de neutrons, como, por exemplo, a sua normalização a um dado valor.

3.3 - Determinação dos auto-valores do parâmetro v

Como, vimos, os \vee que permitem que o sistema básico (3.2) admi ta soluções não triviais, ou seja, os auto-valores do parâmetro \vee , são as raizes da equação (3.5), equação esta, equivalente a (3.3), ou seja, ao anulamento do determinante dos coeficientes do sistema (3.2).

Para facilitar a notação, introduzamos uma matriz $(H^{R}(v))$ de-finida por:

$$\left(H^{n}(v)\right) = P_{n}(\left(vU\right)) - W_{n-1}(\left(vU\right)) \left(v\gamma^{0}\right)$$

$$(3.20)$$

Em têrmos desta matriz, a (3.18) e a (3.19) ficam:

$$|B^{n}(v)\rangle = (H^{n}(v))|B^{0}(v)\rangle \qquad (3.21)$$

A equação (3.5), considerando a (3.21) se escreve:

$$(H^{N+1}(v))|B^{0}(v)\rangle = 0 \qquad (3.22)$$

O sistema de equações algébricas acima so admitira soluções não triviais se o determinante da matriz (H^{N+1}(ν)) for nulo:

$$\left| \left| H^{N+1}(v) \right| \right| = 0 \tag{3.23}$$

ou

$$\left|\left|P_{N+1}(\{vU\}) - W_{N}(\{vU\})(v\gamma^{o})\right|\right| = 0 \qquad (3.24)$$

A equação (3,24) é a equação característica que nos fornecerá

۰.

os (L+1) (N+1) auto-valores para V e, ao mesmo tempo, eliminarã a arb'trariedade, até aquí, total, do vetor $|B^{\circ}(v)\rangle$: restar-nos-á somente uma componente arbitrária ou a possibilidade de introduzir uma condição extra entre tais componentes, por exemplo, sua normalização a um dado valor. De fato, $P_{N+1}(|vU\rangle)$ e $W_N(|vV\rangle) |v\gamma^{\circ}\rangle$ são polinômios matriciais de ordem (N+1) e $|vU\rangle$ e $|v\gamma^{\circ}\rangle$ são matrizes de ordem (L+1), e portanto, a equação (3.24) será de ordem (N+1) (L+1) em v.

Pode-se demonstrar que, considerando somente N impar, não teremos raizes nulas para (3.25), quer L seja par ou impar. Como a presen ça de raizes nulas introduz, jã no caso mono-energético, complicações sé rias^(1,28), suporemos sempre N impar.

Como tanto $P_{N+1}((\nu U))$ como $W_N((\nu U))(\nu \gamma^0)$ são polinômios de or dem par em ν ,⁽⁶⁾ as (N+1) (L+1) raizes de (3.25) aparecerão aos pares e para cada raiz + $|\nu_s|$ (s= 1,..., $\frac{1}{2}$ (N+1) (L+1)), existirá a raiz simétrica - $|\nu_s|$.

No apêndice A-2, démonstramos que Lodos os v_g são reais, para uma classe ampla de problemas físicos.

Notemos que o método utilizado para resolver o sistema (3.2), através do ansatz (3.10), leva ao cálculo das raizes de um determinante de ordem (L+1) somente. Há, assim, em relação ao método direto de soluções de (3.2), uma economia realmente apreciável em capacidade de memória de computadores digitais utilizados no cálculo de tais raizes.

O número total de raizes, evidentemente, continua sendo (L+1) ... (N+1).

Finalmente, algumas observações são necessárias para justificar, de maneira mais objetiva, a enfase que puzemos na vantagem computacional decorrente do uso da transformação (2.36) que diagonalizou a matriz (V).

Para isso, consideremos e equação caracterÍstica (3.24) e vamos re-escrevê-la explicitando os elementos das matrizes que al comparecem, tomando um exemplo específico: L#4 ; N#4.

Temos:

$$P_{5}((vU)) = \frac{1}{8} \left[\frac{6}{63}((vU))^{5} - 70((vU))^{3} + 15(vU) \right]$$
$$W_{4}((vU)) = \frac{63}{8} ((vU))^{4} - \frac{49}{8} ((vU))^{2} + \frac{8}{15} (I)$$

Se (U) não fosse diagonal, teríamos que efetuar, num cálculo numérico, tôdas as potências indicadas de (U), e mais a multiplicação por $(v\gamma^{\circ})$.

Sendo (U) diagonal, temos simplesmente que, em geral,

onde p é um expoente genérico e os 8₁ (i=1,...,5) são os elementos diag<u>o</u> nais da matriz (U).

Logo:

$$P_{5}(\{vU\}) = \begin{bmatrix} P_{5}(v\beta_{1}) & & & & & \\ & P_{5}(v\beta_{2}) & & & & \\ & P_{5}(v\beta_{3}) & & & & \\ & & P_{5}(v\beta_{3}) & & & \\ & & & P_{5}(v\beta_{4}) & & \\ & & & & P_{5}(v\beta_{5}) \end{bmatrix}$$

. 36 .

Expressões análogas poderlam ser obtidas para W4((∨U)). E, imediatamente, se obtem, para a equação caracterÍstica, nesse caso L=4, N=4:

$$||P_{5}(\nu\beta_{i})\delta_{ij} - \sum_{k=1}^{5} W_{4}(\nu\beta_{i})\delta_{ik}(\nu\gamma_{kj})|| = 0 \quad (i, j=1, 2, ..., 5)$$

A ausência de multipliçação de matrizes para obter os elementos do determinante da equação característica é elemento importante de sim plificação dos cálculos numéricos e de tempo de computador.

E talvez mais importante ainda, o aparecimento de polinômios em variáveis algébricas vai nos permitir analisar o comportamento da equação característica quando, numa dada ordem de aproximação energética, a ordem de aproximação angular N tende para infinito.. Sem diagonalizar (V), talvez fosse possível tal análise, mas somente através da teoria dos determinantes de ordem infinita.

3.4 - Solução geral em uma aproximação de ordem L-N

Considerando os resultados fundamentais do capículo II e dos Ítens anteriores dêste capítulo, podemos resumí-los como segue:

Da equação geral (1.23) em geometria plana e com núcleo de espalhamento genérico, sem fonte:

$$\mu \frac{\partial}{\partial x} \Phi(x, E, \mu) + \Sigma(E) \Phi(x, E, \mu) =$$

$$= \sum_{\ell=0}^{\infty} \frac{2\ell+1}{2} \int_{0}^{\infty} dE^{*} \Sigma_{s}^{\ell} (E^{*} \rightarrow E) P_{\ell}(\mu) \int_{-L}^{L} d\mu^{*} P_{\ell}(\mu^{*}) \Phi(\mathbf{x}, E^{*}, \mu^{*}) \qquad (1.23)$$

obtivemos, transformando $\Phi(x, E, \mu)$ em $\Psi(x, E, \mu)$ através de

$$\Phi(\mathbf{x},\mathbf{E},\mu) = \sqrt{M(\mathbf{E})^{2}}, \ \Psi(\mathbf{x},\mathbf{E},\mu) \qquad (2.4)$$

a equação (2,8.) opde agora os núcleos de espalhamento são simétricos:

$$\mu \frac{\partial \Psi}{\partial x} (x, E, \mu) + E(E)\Psi(x, E, \mu) =$$

$$= \sum_{\ell=0}^{\infty} \frac{2\ell + L}{2} \int_{0}^{\infty} dE^{\dagger} \Sigma_{SS}^{2} (E^{\dagger} + E) P_{\ell}(\mu) \int_{-1}^{1} d\mu^{\dagger} P_{\ell}(\mu^{\dagger})\Psi(x, E^{\dagger}, \mu^{\dagger}) \qquad (2..9)$$

Desenvolvendo Ψ(x,E,µ) em uma série de polinômios ortonormais e completo da energia E, ou seja, pondo

$$\Psi(\mathbf{x}, \mathbf{E}, \boldsymbol{\mu}) = \sum_{j=0}^{\infty} f_j(\mathbf{x}, \boldsymbol{\mu}) g_j(\mathbf{E}) \qquad (2.13)$$

reduzimos a equação integro-diferencial (2.9) a um sistema (2.24) de (L+1) equações ainda integro-diferenciais, tendo mantido somente um número finito (L+1) de têrmos no desenvolvimento (2.13) - aproximação ener gética de ordem L -:

$$\mu \frac{\partial}{\partial x} |f(x,\mu)\rangle + \langle V \rangle |f(x,\mu)\rangle =$$

$$= \sum_{k=0}^{\infty} \frac{2k+1}{2} P_{k}(\mu) \int_{-1}^{1} d\mu' P_{k}(\mu') \langle \alpha^{k} \rangle |f(x,\mu')\rangle \qquad (2.24)$$

Utilizando agora um desenvolvimento da dependência angular de $|f(x,\mu)\rangle$ em polinômios de Legendre

$$|f(x,\mu)\rangle = \sum_{m=0}^{\infty} \frac{2m+1}{2} P_{m}(\mu) |A^{m}(x)\rangle$$
 (2,23)

e mantendo sòmente (N+1) têrmos - aproximação de ordem N - reduzimos (2.21) ao sistema (2.33) de (N+1) equações diferenciais matriciais

$$(n+1)\frac{\partial}{\partial x} |A^{n+1}(x) > + n \frac{\partial}{\partial x} |A^{n-1}(x) > + (2n+1) \{V\} |A^{n}(x) > =$$

$$= (2n+1) (\alpha^{n}) |A^{n}(x) > (n=0,1,\ldots,N-1)$$

$$N \frac{\partial}{\partial x} |A^{N-1}(x) > + (2N+1) \{V\} |A^{N}(x) > =$$

$$= (2N+1) (\alpha^{N}) |A^{N}(x) >$$

$$(2.33)$$

Tendo posto:

•

5

. ÷.

$$|A^{n}(x)\rangle = e^{-x/v}|A^{n}(v)\rangle$$
 (2.34)

.

•

-

o sistema diferencial (2.33) forneceu o sistema algébrico matricial

$$(n+1) |A^{n+1}(v) > +n |A^{n+1}(v) > -v(2n+1) (V) |A^{n}(v) > = = -v(2n+1) (a^{n}) |A^{n}(v) > (n=0,1,...,N-1) = -v(2n+1) (v) |A^{n}(v) = = -v(2n+1) (a^{n}) |A^{n}(v) >$$

$$(2.35)$$

O desacoplamento parcial desse sistema foi conseguido através

de uma transformação de similitude determinada para diagonalizar (V):

$$(s)^{-1}(v)(s) \neq (v)$$
 (2.36)

. 39 .

. 40 .

$$(S)^{-1}|A^{n}(v)\rangle = |B^{n}(v)\rangle$$
 (2.38)

E, a (2.35) se transformou no sistema parcialmente desacoplado (2.39):

$$(n+1)(I)|B^{n+1}(v) > +n(I)|B^{n-1}(v) > -v(2n+1)(U)|B^{n}(v) > =$$

$$= -v(2n+1)(\gamma^{n})|B^{n}(v) > (n=0,1,...,N-1)$$

$$N|B^{N-1}(v) > -v(2N+1)(U)|B^{N}(v) > =$$

$$= -v(2N+1)(\gamma^{N})|B^{N}(v) >$$

$$(2.39)$$

Finalmente, a solução geral desse distema, no caso de espalha mento isotrópico foi mostrado ser

,

$$|B^{n}(v)\rangle = \left[P_{n}((vU)) - W_{n-1}((vU))(v\gamma^{o})\right] |B^{o}(v)\rangle$$
(3.18)

desde que v assumisse un dos (N+1) (L+1) valores característicos ${}^{\pm}v_s$ da- dos pelss raizes do determinante de orden (L+1):

$$\left|\left|P_{N+1}((vU)) - W_{N}((vU))(v\gamma^{0})\right|\right| = 0$$
(3.24)

Em consequência do caráter linear da equação básica e das transformações efetuadas, a solução geral, na aproximação de ordem L-N (N impar) e caso de espalhamento isotrópico, sem fonte, será:

$$\Phi(\mathbf{x}, \mathbf{E}, \mu) = \sqrt{M(\mathbf{E})^{*}} \begin{bmatrix} \overline{L} & \sum_{j=0}^{N} & \frac{1}{2} \sum_{n=0}^{2} (N+1) (L+1) [C_{s}^{(+)} \Lambda_{j}^{n} (+\nu_{s}) e^{-\mathbf{x}/\nu_{s}} + C_{s}^{(-)} \Lambda_{j}^{n} (-\dot{\nu}_{s}) e^{\mathbf{x}/\nu_{s}}], \\ \cdot & \frac{2n+1}{2} P_{n}(\nu) g_{j}(\mathbf{E}) \end{bmatrix}, \qquad (3.26)$$

Os $C_s^{(+)}$ e $C_s^{(-)}$ são (N+1) (L+1) constantes arbitrárias, a se rem determinadas pelas condições de contôrno do problema físico específí co e os $A_j^n(*\nu_s)$ - componentes de $|A^n(\nu_s)\rangle$ - serão determinadas pela apli cação de (S) a $|B^n(*\nu_s)\rangle$:

$$A^{n}(\pm v_{s}) > = (s) |B^{n}(\pm v_{s}) > \qquad (3.27)$$

ou

$$|\Lambda^{n}(*\nu_{g})\rangle = (S)(\mathfrak{H}^{n})|B^{\circ}(*\nu_{g})$$
(3.28)

com

$$\left(\mathbb{H}^{n}\right) = \mathbb{P}_{n}\left(\left(\mathbb{V}\mathbb{U}\right)\right) = \mathbb{W}_{n-1}\left(\left(\mathbb{V}\mathbb{U}\right)\right)\left(\mathbb{V}Y^{0}\right)$$
(3.29)

Sendo, então, $\Psi(x,E,\mu)$ solução geral da equação de transporte sem fonte, no caso de geometria plana, núcleo de espalhamento isotropico, na aproximação energética de ordem L e angular de ordem N.

CAPÍTULO IV

COMPORTAMENTO ASSINTÓTICO ANGULAR NA APROXIMAÇÃO L-N

4.1 - <u>Análise dos valores característicos, na aproximação L-N, quan-</u> do N→∞

No capítulo III mostramos que os valores característicos ou au to-valores $\frac{1}{8} \frac{1}{2} = 1, 2, \dots, \frac{1}{2}(L+1)$ (N+1) na aproximação L-N do método PEA com N impar e caso de espalhamento isotrópico, eram as raizes da equação:

$$\left|\left|P_{N+1}(\{vU\})-W_{N}(\{vU\})(v\gamma^{\circ})\right|\right| = 0 \qquad (3.29)$$

Sendo (U) uma matriz diagonal de ordem (L+1), seus elementos serão da forma:

$$[U]_{ij} = \beta_j \delta_{ij} ; (i, j = 0, 1, \dots, L)$$
(4.1)

Com a escolha de $(\frac{1}{\Sigma})_{min}$ para a unidade de comprimento, as secções de choque são adimensionais e, em particular, $\Sigma(E)$, adimensional,s<u>a</u> tisfaz a:

$$\Sigma (E) \ge 1 \tag{4.2}$$

Nestas condições, pode-se demonstrar ⁽²²⁾ que

$$\beta_{j} \ge 1$$
 (j=0,1,...,L) (4.3)

e no que segue, serão ordenados em ordem decrescente:

$$\beta_0 > \beta_1 > \dots > \beta_L \ge 1 \tag{4.4}$$

Escrevamos a (3,24) como

$$||P_{N+1}(\beta_{j}\nu)\delta_{jk} - \sum_{i=0}^{L} W_{N}(\beta_{j}\nu)\delta_{ji}(\nu\gamma^{0})_{ik}||=0 \quad (k,j=0,1,...L) \quad (4.5)$$

Nosso problema é analisar o comportamento das soluções de(4.5) quando N⇒∞

Dois casos distintos se apresentam correspondentes a argumentos dos polinômios maiores ou menores do que l.

Ordenemos o conjunto dos ${}^{\pm v}{}_{8}$, soluções de (4.5), numa dada ordem de aproximação L-N, de maneira que:

$$v_{s} \notin (-\frac{1}{\beta_{L}^{*}}, \frac{1}{\beta_{L}}) \text{ para } s=1,2,\ldots,S_{L};$$
 (4.6)

$$v_s \in (-\frac{1}{\beta_L}, \frac{1}{\beta_L})$$
 para $s=S_1+1, S_1+2, \dots, \frac{1}{2}(N+1)(L+1).$ (4.7)

Conforme análise apresentada no Apêndice A-2, existe uma classe de problemas físicos para a qual:

$$v_s = v_s^*$$
, (4.8)

ou seja: todos ν_B são reais. No que segue consideraremos (4.8) como válida.

Os v_s que satisfazem (4.6) diremos serem auto-valores pertencentes ao espectro discreto puro, e indicá-lor emos por v_s^(d); e os v_s que satisfizerem (4.7) diremos serem auto-valores pertencentes ao espectro misto(discreto superposto a um contínuo) e indicá-los-emos por v_s^(c).

A razão dessa classificação ficará clara quando compararmos nossos resultados assintóticos com os do espectro de FL-II,⁽²²⁾ citados no Apêndice A-1.

4

Sbvio que:

$$|\beta_{js}^{(d)}|>1 \text{ para } s=1,...,s_1$$
 (4.9)

e para qualquer β_{j} (j=0,1,...,L).

.

Consideremos agora as formas assintóticas para $P_{N+1}(x)$ quando |x|>1, obtidas imediatamente das expressões de Jahnke-Emde (29) e, por tanto, aplicáveis quando os v que comparecem em (4.5) pertencerem ao espectro discreto puro e satisfizerem a (4.8):

$$P_{N+1}(\beta_{j} v_{s}^{(d)}) \sim (2\beta_{j} v_{s}^{(d)})^{N+1} \sqrt{\pi(N+1)}; N > 1$$
(4.10)

$$W_{N}(\beta_{j}v_{s}^{(d)}) \sim \left[(2\beta_{j}v_{s}^{(d)})^{N+1} / \sqrt{\pi(N+1)} \right] tgh^{-1} (\beta_{j}v_{s}^{(d)})^{-1} - \sqrt{\pi/(N+1)} (2\beta_{j}v_{s}^{(d)})^{2N+4} ; N^{>>1}.$$
(4.11)

A equação caracterÍstica (4.5) fica, para N>>1, após simplificações imediatas:

$$\|\delta_{jk} - \sum_{i=0}^{L} \left[t_{gh}^{-1} (\beta_{j} v_{g}^{(d)})^{-1} - \pi/(2\beta_{j} v_{s}^{(d)})^{2N+3} \right] v_{s}^{(d)} \delta_{ji} \gamma_{ij}^{o} \| = 0$$

$$(j_{k=0,1,...,L}).$$
 (4.12)

No limite N+*, (5.12) fornece:

$$||\delta_{jk} - \sum_{i=0}^{L} v_s^{(d)} t_{gh}^{-1} (\beta_j v_s^{(d)})^{-1} \delta_{ji} \gamma_{ik}^{0}|_{i=0}^{i=0} ; (j,k=0,1,\ldots,L). \quad (4.13)$$

Comparando (4.13) com (A-1.23), vemos que os $v_s^{(d)}$ dados por (4.13) coincidem com os v_g dados por (A-1.23), provando que os valores característicos reals do espectro discreto puro $v_s^{(d)}$ tendem para os valores característicos reals do espectro discreto puro de FL-II, quando N+ v_s

Uma indicação da rapidez dessa convergência pode ser obtida observando os valores constantes dos quadros abaixo, onde apresentamos os valores para $|v_s^{(d)}|$ calculados para o exemplo tratado em FL-II (refe rência 22). Neste trabalho, Ferziger e Leonard consideram o denominado "modêlo do gás pesado" para o meio moderador, supõem espalhamento elásti co independente da energia do neutron ($\Sigma_s(E)$ =constante), e uma lei de absorção 1/v. Introduzem um parâmetro de absorção t definido por

onde $\Sigma_a(1)$ é o valor da secção de choque macroscópica de absorção para neutrons de energia 1 kT; e consideram três valores distintos para ε : $\varepsilon=0,005$; $\varepsilon=0,05$; $\varepsilon=0,5$.

Os valores para $|v_s^{(d)}|$ foram calculados pelo método PEA, nas aproximações energéticas de ordem L=2,3,4, utilizando para os $g_j(E)$ pol<u>i</u> nômios de Laguerre de primeira espécie multiplicados por $\sqrt{M(E)}^{\prime}$.

Todo o processo de cálculo - esquematizado no item 3.4 - foi automatizado através de uma série de programas digitais sequenciais, escritos em Fortran-II-D, para o computador IBM-1620 - modèlo II-D do Instituto de Energia Atômica. Dados os valores de V_{jk} e α_{jk} , o conjunto de programas fornece tôdas as (N+1) (L+1) raizes características. Nos quadros seguintes apresentamos sômente as correspondentes ao espectro discreto, ou seja, aquelas que satisfazem a (4.9) e que, no exemplo, par ticular considerado, são tôdas reais.

•

.

.

•

TABELA I

÷

.

. .

,

.

.

.

ε = 0,005

	L	N	[v _o (d) [v1 ^(d)	v2 ^(d)	v ₃ ^(d)
	2	1	8,6612	1,2762		
		· 3	8,6765	1,3905	1,0781	
		5	8,6765	1,3934	1,0938	a • •
		Exato(FL-II)	8,6907	1,3935	1,0966	
	3	1	8,6907	1,2762		
		3	8,7060	1;3906	1,0782	• • •
		5	8,7059	1,3935	1,0939	
		Exato(FL-11)	8,6907	1,3948	1,0966	1,0109
	4	1	8,6703	-1,2763		
		3	8,6856	1,3906	1,0782	• • •
		5	8,6857	1,3935	1,0939	
		Exato(FL-II)	8,6907	1,3948	1,0966	1,0111

TABELA II

.

.

ε = 0,05

		. .			
L	Ņ]v ₀ ^(d)]	$ v_1^{(d)} $	v ₂ ^(d)	v3 ^(d)
	· 1	2,7323	1,1609	• a •	• = Ţ
	3	2,7784	1,2801	1,0259	۰ ۵ ¢
2	• 5	2,7785	1,2841	1,0428	• • • • .
	Exato(FL-11)	2,7788	1,2843	1,0463	, a a c
	1	2,7342	1,1618	• • •	
	3	2,7803	1,2811	1,0314	4 4 V
3	5	2,7804	1,2851	1,0489	
	Exato(FL-II)	2,7799	i,2852	1,0527	
	· 1	2,7351	1,1622		
	3	2,7812	1,2815	1,0322	
4	5	2,7812	1,2854	1,0497	
•	Exato(FL-II)	2,7810	1,2856	1,0536	0,9896

.

-

.

.

TABELA III

-

.

.

.

ε = 0,5

۰.

•

•

L	Ň	$ \nu_0^{(d)} $	v1 ^(d)	v ₂ ^(d)	v ₃ (q)
	1	0,8767		· · ·	\$ \$ B
	З	0,9880	0,8475		
2	5	0,9939	0,8619		
	Exato(FL-II)	0,9945	0,8658	• • •	
-	1	0,8767			• • •
-	3	0,9880	0,8642	• • •	• • •
3	5	0,9939	0,8837	a ø .	
	Exato(FL-II)	0,9945	0,8905	à . .	· · ·
	1	0,8768		D # 4	o - a =
	3	0,9880	0,8644	· • • •	
4	5	0,9939	0,8849	• • •	• • •
	Exato(FL-II)	0,9945	0,8941		

Certas flutuações observadas no modo de convergência dos $|b_s^{(d)}|$ para os valores exatos (de FL-II) quando N cresce, são possivelmente, de vidas a erros de arredondamento em cálculos numéricos.. Sem entrar em de talhe, cremos que a maior fonte de erros se encontra no método adotado para o cálculo final das raizes, ou seja, na determinação dos zeros da equação (3.24) ou (4.5). É um problema de cálculo numérico digital que está sendo analisado.

A consideração de (4.12) mostra ainda que a convergência no campo real de $v_6^{(d)}$ para os v_l discretos puros de FL-II será, numa dada ordem de aproximação N, tanto mais rápida quando maior o valor de $|\beta_j v_6^{(d)}|$. Podemos, assim, esperar que o formalismo PEA nos forneça raizes características discretas mais próximas das raízes exatas - no sentido de FL-II - para os auto-valores reais maiores. Estas considerações justificam a seguinte observação feita em FL-II (referência 22, pag.179; "Em geral, vê-se que a teoria de difusão prediz os comprimentos de difusão com precisão sômente para <u>pequena absorção</u> e <u>sômente para o primeiro</u> modo". (grifo nosso). Fara isso basta notar:

a) a teoria de difusão citada não passa da aproximação de ordem N=1 (aproximação angular P,) em nosso formalismo;

b) que uma pequena absorção do meio implica em pequena distor ção do espectro energético em relação a um maxwelliano;^(*)

c) que o primeiro modo corresponde ao maior auto-valor real $v_{\rm a}^{\rm (d)}$.

Notemos ainda que todo o raciocínio desenvolvido para demonstrar que, quando N> ∞ , a (4.5) tende para a (4.12) ou para a (A-1.23), se baseia na condição de os argumentos dos polinômios $P_{N+1}(\beta_j v_s^{(d)})$ e $W_N(\beta_j v_s^{(d)})$ serem maiores que 1, para qualquer β_j .

(*)Com uma escolha conveniente de polinômios ortogonais na energia - como os polinômios de Laguerre de primeira especie multiplicados por $\sqrt{M(E)}$ - um espectro pouco destorcido em relação a um espectro maxwelliano necessitará poucas componentes (L pequeno) para ser bem aaproximado. Para as raizes do espectro que denominamos misto, isto é, para os $v_s^{(c)}$, o comportamento assintótico de $P_{N+1}(\beta_j v_s^{(c)}) \in W_N(\beta_j v_s^{(c)})$ será radicalmente diferente⁽⁶⁾. De fato, haverá raizes para as quais $[\beta_j v_s^{(c)}] < l$ e para argumentos |x| < l tanto $P_{N+1}(x)$ como $W_N(x)$ apresentam, assintóticamente, um caráter oscilante que impede tiremos conclusões semelhantes às apresentadas quando da análise dos autos-valores $v_s^{(d)}$.

Em particular, não parece haver convergência nem para os valores discretos que se apresentam quando os $v_{\rm L}$ de FL-II pertencem a intervalos indicados em A-1 como do tipo $I_{\beta_{\rm L}}$. Podemos antecipar, no entanto, que quando N>>1, as raizes $v_{\rm g}^{\rm (c)}$ no método PEA, que satisfazem a (4.7) fornecerão têrmos para o fluxo de neutrons que tenderão, possívelmente, a representar os efeitos dos têrmos que correspondem ao espectro misto de FL-II, conforme analisaremos no ítem 4.2.

4.2 - Comportamento das soluções na aproximação L-N quando N+>>

No capítulo III mostramos que a solução geral de (1,23) para o caso de espalhamento isotrópico era dada por:

$$\phi(\mathbf{x},\mathbf{E},\boldsymbol{\mu}) = \sqrt{\mathbf{M}(\mathbf{E})} \sum_{\mathbf{j}=\mathbf{0}}^{\mathbf{L}} \sum_{\mathbf{n}=\mathbf{0}}^{\mathbf{N}} \sum_{\mathbf{k},\mathbf{m}=\mathbf{0}}^{\mathbf{L}} \sum_{\mathbf{j}\neq\mathbf{0}}^{\mathbf{j}} \sum_{\mathbf{j}\neq\mathbf{0}}^{\mathbf{j}} \sum_{\mathbf{k}\neq\mathbf{0}}^{\mathbf{j}} \sum_{\mathbf{j}\neq\mathbf{0}}^{\mathbf{j}} \sum_{\mathbf{j}\neq\mathbf{0}}^{\mathbf{k}+\mathbf{1}} \sum_{\mathbf{j}\neq\mathbf{0}}^{\mathbf{j}} \sum_{\mathbf{0}}^{\mathbf{j}} \sum_{\mathbf{0}}^{\mathbf{j}} \sum_{\mathbf{0}}^{\mathbf{1}} \sum_{\mathbf{0}^{\mathbf{1}} \sum_{\mathbf{0}}^{\mathbf{1}} \sum_{\mathbf{0}}^{\mathbf{1}} \sum_{\mathbf{0}$$

Come (0) é diagonal, podemos escrever H_{km}^n come:

$$H_{km}^{n} = P_{n}(\beta_{k} v) \delta_{km} - W_{n+1}(\beta_{k} v) \cdot v \cdot \gamma_{km}^{o}$$

$$(4.14)$$

Separemos a solução (3.30) em duas partes $\phi_d(x,E,\mu) = \phi_c(x,E,\mu)$:

. 51 .

$$\Phi(x, E, \mu) = \Phi_d(x, E, \mu) + \Phi_c(x, E, \mu)$$
 (4.15)

$$\Phi_{d}(x,E,\mu) = \sqrt{M(E)} \left[\sum_{j=0}^{L} \sum_{n=0}^{N} \sum_{k=0}^{L} \sum_{s=1}^{S_{1}} S_{jk} H_{km}^{n} \left[C_{s}^{(+)} B_{m}^{0}(+v_{s}^{(d)}) e^{-\frac{x}{v_{s}}(d)} + C_{s}^{(-)} B_{m}^{0}(-v_{s}^{(d)}) e^{-\frac{x}{v_{s}}(d)} \right] \frac{2n+1}{2} P_{n}(\mu) g_{j}(E)$$

$$(4.16)$$

$$\Phi_{c}(x,E,\mu) = \sqrt{M(E)} \sum_{j=0}^{L} \sum_{n=0}^{N} \sum_{k,m=0}^{L} \sum_{s=S_{g}+1}^{\frac{1}{2}} N(k+1) (L+1) \sum_{jk=0}^{N} F_{km}^{n} \left[C_{s}^{(+)} B_{m}^{0}(+v_{s}^{(c)}) e^{-\frac{X}{v}} e^{c} + C_{s}^{(-)} B_{m}^{0}(-v_{s}^{(c)}) e^{-\frac{X}{v}} e^{c} \right]$$

$$+ C_{s}^{(-)} B_{m}^{0}(-v_{s}^{(c)}) e^{-\frac{X}{v}} e^{c} \sum_{s=0}^{\frac{1}{2}} P_{n}(\mu) g_{j}(E)$$

$$(4.17)$$

Demonstremos que:

 a) lim, Φ_d(x,E,μ) coincide com a parte discreta pura de FL-II;
 N→∞.
 b) Φ_c(x,E,μ) para N>>1, parece não convergir para a parte contínua de FL-II, mas, possívelmente, descreve os efeitos de tal parte.

4.3 - Comportamento de $\Phi_d(x, E, \mu)$ parà N⁴⁰⁰

٠

Considerando(A-1.39) e (4.16) desejamos provar que:

$$\lim_{\mathbb{N}^{+\infty}} \Phi_{\mathbf{d}}(\mathbf{x}, \mathbf{E}, \boldsymbol{\mu}) \rightarrow \sqrt{\mathbf{M}(\mathbf{E})}^{\mathsf{T}} \sum_{\mathbf{j}=0}^{\mathsf{L}} \sum_{\mathbf{s}=0}^{\mathsf{M}} g_{\mathbf{j}}(\mathbf{E}) \begin{bmatrix} \mathbf{a}_{(\mathbf{+})s} f_{\mathbf{j}}(\mathbf{v}_{s}, \boldsymbol{\mu}) \mathbf{e} & \frac{\mathbf{x}}{\mathbf{v}_{s}} \\ \mathbf{a}_{(\mathbf{+})s} f_{\mathbf{j}}(\mathbf{v}_{s}, \boldsymbol{\mu}) \mathbf{e} & \frac{\mathbf{x}}{\mathbf{v}_{s}} \end{bmatrix} + \mathbf{a}_{(\mathbf{-})s} f_{\mathbf{j}}(\mathbf{-v}_{s}, \boldsymbol{\mu}) \mathbf{e} & \frac{\mathbf{x}}{\mathbf{v}_{s}} \end{bmatrix}$$

$$(4.18)$$

com:

$$f_{j}(^{\pm}v_{s},\mu) = \frac{1}{2} \sum_{k,m=0}^{L} (S_{jk} \frac{v_{s}}{\beta_{k} v_{s} + \mu}) \gamma_{km}^{o} w_{m}(v_{s}) \qquad (A-1.27)$$

sendo $\frac{1}{\beta_L}$, as raizes do determinante (A-1.23) não pertencentes ao intervalo $\langle -\frac{1}{\beta_L}, \frac{1}{\beta_L} \rangle$.

Continuando a supor validas as condições de realidade dos $v_s^{(d)}$, vimos no Ítem 4.1 que:

.

-

-

$$\lim_{N \to \infty} v \frac{(d)}{s} s \qquad (4.19)$$

A validade de (4.18) ficará provada se demonstrarmos que:

$$\lim_{N \to \infty} \sum_{n=0}^{N} \left(\frac{2n+1}{2} \right) \mathbb{H}_{km}^{n} \mathbb{B}_{m}^{o}(\pm v_{s}) \mathbb{P}_{\mu}(\mu) \neq \frac{1}{2} \frac{v_{s}}{\frac{\beta_{k}v_{s}}{k} + \mu} Y_{km}^{o} w_{m}(v_{s})$$
(4.20)

ou utilizando a (4.14) e considerando somente o caso (+ v_s)e eliminando o Índice s, que:

$$\lim_{N \to \infty} \sum_{n=0}^{N} \left[\mathbb{P}_{n} \langle \beta_{k} v \rangle \delta_{km} - \mathbb{W}_{n-1} \langle \beta_{k} v \rangle \cdot v \cdot \gamma_{km}^{0} \right] B_{m}^{0}(v) \frac{2n+1}{2} \mathbb{P}_{n}(v) + \frac{1}{2} \frac{v}{\beta_{k} v - \mu} \gamma_{km}^{0} \mathbb{W}_{m}(v) \cdot (4.21)$$

A expressão (3.7) para $W_{n-1}(x)$ nos permite escrever o primeiro ' membro da expressão acima como:

$$\lim_{N \to \infty} \sum_{n=0}^{N} \frac{\frac{2n+1}{2}}{2} P_n(\mu) P_n(\beta_k \nu) (\delta_{km} - \nu Q_0(\beta_k \nu), \gamma_{km}^0) B_m^0(\nu) +$$

. 53 .

+
$$\frac{v}{2}(2n+1)P_{n}(\mu) \circ Q_{n}(\beta_{k}v)\gamma_{km}^{o}B_{m}^{o}(v) = G_{km}^{(1)}(\beta_{k}v)+G_{km}^{(2)}(\beta_{k},v),$$
 (4.22)

$$G_{km}^{(1)}(\beta_{k},\nu) = \sum_{n=0}^{\infty} \frac{2n+1}{2} P_{n}(\mu) P_{n}(\beta_{k}\nu), (\delta_{km}-\nu Q_{\sigma}(\beta_{k}\nu), \gamma_{km}^{o}) B_{m}^{(o)}(\nu) \quad (4.23)$$

$$G_{km}^{(2)}(\beta_k, v) = \sum_{n=0}^{\infty} \left[(2n+1)P_n(v)Q_n(\beta_k v) \right] \cdot v \cdot \gamma_{km}^{o} B_m^{o}(v), \qquad (4,24)$$

Como $|\beta_{k}v|>1 e |\mu|<1$ para o caso de espectro discreto, que esta mos analisando, o desenvolvimento de Heine para $\frac{1}{\beta_{k}v-\mu}$ em série de polinômios de Legendre ⁽³⁰⁾ é válido e, portanto:

$$\sum_{n=0}^{\infty} (2n+1) P_n(\beta_k v) Q_n(\mu = \frac{1}{\beta_k v - \mu}$$
(4.25)

$$G_{km}^{(2)} (\beta_k, \nu) = \frac{1}{2} \frac{\nu}{\beta_k \nu - \mu} \circ \gamma_{km}^o, \mathcal{B}_m^o(\nu)$$
(4.26)

Para analisar o têrmo $G_{km}^{(1)}$ (β_k , v) consideremos a fórmula de so mação de Christoffel-Darboux⁽³¹⁾:

.

$$\sum_{n=0}^{N} (2n+1)P_{n}(\mu)P_{n}(\beta_{k}\nu) = \frac{N+1}{\beta_{k}\nu-\mu} \left[P_{N+1}(\beta_{k}\nu)P_{N}(\mu)-P_{N}(\beta_{k}\nu)P_{N+1}(\mu)\right]$$
(4.27)

Pondo P_{N+1} ($\beta_k v$) em evidência (*), podemos escrever:

$$G_{km}^{(1)}(\beta_{k},\nu) = \left[\lim_{N \to \infty} \sum_{n=0}^{N} \frac{N+1}{\beta_{k}\nu-\mu} \left\{ P_{N}(\mu) - \frac{P_{N}(\beta_{k}\nu)}{P_{N+1}(\beta_{k}\nu)} \cdot P_{N+1}(\mu) \right\} \right].$$

$$\left(P_{N+1}(\beta_{k}\nu) \delta_{km} - \nu P_{N+1}(\beta_{k}\nu) \cdot Q_{0}(\beta_{k}\nu) \cdot \gamma_{km}^{o} \right) B_{m}^{o}(\nu) \right] \qquad (4.28)$$

(*) Supomos que as raizes da equação característica (3,25) não coincidam com as de $P_{N+1}(x) = o$

$$B_{k}^{n}(\nu) = \sum_{m=0}^{L} \left[\overline{P}_{n}(\beta_{k}\nu) \left(\delta_{km} - Q_{0}(\beta_{k}\nu) \cdot \nu \cdot \gamma_{km}^{0} \right) B_{m}^{0}(\nu) + Q_{n}(\beta_{k}\nu) \cdot \nu \cdot \gamma_{km}^{0} \cdot B_{m}^{0}(\nu) \right]$$

$$(4.29)$$

Como, para as raizes características, segundo (3.5).

$$B_{\mathbf{k}}^{N+1}(v) = o \qquad (4.30)$$

segue que

.

$$\sum_{m=0}^{L} \left[\overline{P}_{N+1}(\beta_{k} v) \delta_{km} - v P_{N+1}(\beta_{k} v) Q_{0}(\beta_{k} v) \cdot \gamma_{km}^{0} \right] B_{m}^{0}(v) =$$
$$= -\sum_{m=0}^{L} Q_{N+1}(\beta_{k} v) \cdot v \cdot \gamma_{km}^{0} \cdot B_{m}^{0}(v) \qquad (4.31)$$

Podemos escrever, considerando (4.28) e (4.31):

$$-\sum_{m=0}^{L} G_{km}^{(1)}(\beta_{k}v) = \sum_{m=0}^{L} \left[\lim_{N \to \infty} \sum_{n=0}^{N} \frac{N+1}{\beta_{k}v - \mu} \left(P_{N}(\mu) - \frac{P_{N}(\beta_{k}v)}{P_{N+1}(\beta_{k}v)} \cdot P_{N+1}(\mu) \right) \right].$$

$$\mathbf{O}_{N+1}(\boldsymbol{\beta}_{k}\boldsymbol{v}),\boldsymbol{v},\boldsymbol{\gamma}_{km}^{\boldsymbol{o}},\mathbf{B}_{m}^{\boldsymbol{o}}(\boldsymbol{v})$$
(4.32)

Considerando as expressões assintóticas⁽²⁹⁾ para $Q_{N+1}(\beta_k v)$ e $P_{N+1}(\beta_k v)$ quando $|\beta_k v|>1$, é imediato se mostrar que:

$$\sum_{m=0}^{L} G_{km}^{(1)}(\beta_{k}v) = 0 \qquad (4.33)$$

Coletando os resultados expressos por (4.26) e (4.33), vemos que, considerando implicitamente o efeito da somatoria sobre m:

$$\frac{11m}{N+m}\sum_{n=0}^{N} \left[\overline{P}_{N}(\beta_{k}\nu)\delta_{km} - W_{n-1}(\beta_{k}\nu)\nu\gamma_{km}^{o} \right] B_{m}(\nu) \cdot \frac{2n+1}{2} P_{n}(\mu) =$$
$$= \frac{1}{2} \frac{\nu}{\beta_{k}\nu - \mu} \cdot \gamma_{km}^{o} \cdot B_{m}^{o}(\nu) \qquad (4.34)$$

Para provar a validade de (4.21) resta-nos mostrar que $B_{m}^{O}(v)$ e $W_{m}(v)$ são proporcionais, no limite de N+ ∞ .

Para isso, lembremos que as $B_m^o(v)$ eram determinadas - a menos de uma componente arbitrária ou uma condição de normalização - pela equação (3.23):

$$\left(\mathrm{H}^{N+1}(\mathbf{v})\right)\left(\mathrm{B}^{\circ}(\mathbf{v})\right) \neq 0 \tag{3.23}$$

Quanto as $w_m(v)$ eram determinadas, com o mesmo tipo de indeter minação das $B_m^O(v)$, pela equação (A-1.23)

$$([\mathbf{I}] - [\mathbf{T}(v)](\vec{y})]_{W(v) \ge 0}$$
 (A-1.23)

A (3.23) pode ser escrita como:

$$((\mathbf{I}) - \frac{W_{N}((\mathbf{v}\mathbf{U}))}{P_{N+1}((\mathbf{v}\mathbf{U}))} \cdot \mathbf{v} \cdot {\gamma^{\circ}}) | \mathbf{B}^{\circ}(\mathbf{v}) \rangle = 0$$

$$(4.35)$$

Conforme (4.10) e (4.11):

$$\lim_{N \to \infty} \frac{W_N(\beta_k v)}{P_{N+1}(\beta_k v)} \cong \operatorname{arctgh} \left(\frac{1}{\beta_k v}\right)$$
(4.36)

e, assim, concluimos que:

$$\lim_{N \to \infty} \left(H^{N+1}(v) \right) = \left[I \right] - \left[T(v) \right] \left(\gamma^0 \right)$$
(4.37)

ficando demonstrado que $|B^{D}(v)\rangle$ e $|w(v)\rangle$ são vetores proporcionais e com pletando a prova da validade de (4.18), para os problemas físicos onde só comparecem $v_{s}^{(d)}$ e v_{l} reais.

Esta igualdade, no limite de \mathbb{N}^{∞} , entre o espectro discreto exato (no sentido de FL-II) e o espectro discreto no método PEA, permitenos esperar que o comportamento assintótico do fluxo de neutron seja bem descrito em uma aproximação razoável de ordem N. Por comportamento assintótico, estamos nos referindo ao comportamento do fluxo $\Phi(x, E, \mu)$ longe de regiões de descontinuidade.

Nas vizinhanças de tais regiões de descontinuidade, haverá influência grande do espectro contínuo e, como veremos, não poderemos esperar que o método PEA ofereça resultados satisfatórios, salvo para problemas - importantes aliás - onde haja predominância do comportamento mé dio do fluxo de neutrons. Esta situação se apresenta já no caso mono-energético⁽²⁾ e, evidentemente, não poderíamos esperar que houvesse melho ra no caso poli-energético.

4.4 - Comportamento de $\Psi_{e}(x, E, y)$ quando N**

Desejamos analisar a relação entre $\Phi_{c}(x,E,\mu)$ dada por (4.17) e a parte correspondente ao espectro misto (contínuo e discreto) de FL-II. Considerando a (A-1.38) e (A-1.39), trata-se de relacionar, no limite de N+ ∞ , ou melhor, para N>>1:

$$\Phi_{c}(x,E,\mu) = \sqrt{M(E)} \frac{L}{j=0} \frac{L}{k,m=0} \frac{1}{n=0} \frac{N}{n=0} \frac{1}{s=S_{1}+1} S_{jk} H_{km}^{n}.$$

$$\cdot \left[C_{s}^{(+)} B_{m}^{0}(+\nu_{s}^{(c)}) e^{\frac{-x}{\nu_{s}(c)}} + C_{s}^{(-)} B_{m}^{0}(-\nu_{s}^{(c)}) e^{\frac{x}{\nu_{s}(c)}} \right] \frac{2n+1}{2} P_{n}(\mu) g_{j}(E)$$
(4.17)

e

(FL-II) (FL-II) (FL-II)

$$\Phi_{c}(\mathbf{x}, \mathbf{E}, \mu) \doteq \Phi_{c1}(\mathbf{x}, \mathbf{E}, \mu) + \Phi_{c2}(\mathbf{x}, \mathbf{E}, \mu)$$

com:

$$\Phi_{C2}^{(FL-II)} = \sqrt{M(E)} \sum_{j=0}^{L} \sum_{k,m=0}^{L} \frac{1}{2} S_{jk} \int_{-\frac{1}{\beta_L}}^{\frac{1}{\beta_L}} \frac{\nu}{\beta_k \nu - \mu} \gamma_{km}^{\circ} C_1^{(\nu)} w_m^{(\nu)} e^{-\frac{\gamma_k}{\nu}} d\nu g_j^{(E)}$$

$$(4.38)$$

$$(FL-II) \qquad L \qquad (\frac{1}{\beta_L}) \qquad (72)$$

$$\Phi_{C_{I}}(\mathbf{x},\mathbf{E},\boldsymbol{\mu}) = \sqrt{M(\mathbf{E})} \sum_{j=0}^{L} \sum_{k=0}^{L} \mathbf{s}_{jk} \int_{-\frac{1}{\beta_{L}}}^{\frac{\beta_{L}}{\beta_{L}}} C_{1}(\boldsymbol{\nu})\lambda_{k}(\boldsymbol{\nu})\delta(\beta_{k}\boldsymbol{\nu}-\boldsymbol{\mu})d\boldsymbol{\nu}e^{-\frac{\mathbf{x}}{\nu}}B_{j}(\mathbf{E}) \quad (4.39)$$

onde, conforme detalhamos no apêndice A-1:

a) se $(\beta_k v) \in I_{\beta_k}$, as $w_m(v)$ de (4.39) são determinados por (A-1.35), a integral se reduz a uma soma e os $I_1(v)$ se tornam coeficiente tes, como os $a_x(^{\pm}v_s)$ da parte discreta pura, a serem determinados pelas condições de contôrno;

b) se $(\beta_k v) \in II_{\beta_k}$, $\lambda_k(v)$ é determinada por (A-1,37) com os $\{C_1(v)w_m(v)\}$ que comparecem em (4.38) e os $C_1(v)\lambda_k(v)$ de (4.39) funções arbitrárias, a serem determinados pelas condições de contôrno.

Como ja notamos no item 4.1, quando N+m, os $v_s^{(c)}$ não convergem siquer para os v que pertencem a I_β. Assim, não podemos esperar que haja convergência de $\Phi_c(x, E, \mu)$ para o $\Phi_c(x, E, \mu)$ quando N+m.

No entanto, por analogia com o que ocorre no caso mono-energético^(32,33), podemos esperar que a $\Phi_c(x,E,\mu)$ descreva aproximadamente o comportamento da componente $\Phi_c(x,E,\mu)$ do fluxo de neutrons.

Considerando a (4.17), substituindo Hⁿ_{km} pela sua expressão (4.14) e utilizando (3.7),podemos escrever:

. 58 .

$$\Phi_{c}(x,E,\mu) = \Phi_{c}^{(I)}(x,E,\mu) + \Phi_{c}^{(IE)}(x,E,\mu)$$
(4.40)

com:

$$\frac{(I)}{c} \langle x, E, \mu \rangle = \sqrt{M(E)} \frac{L}{j} \sum_{j=0}^{L} \sum_{k,m=0}^{L} \frac{\sum_{n=0}^{N} \frac{1}{2} (N+1) (j+1)}{\sum_{j=0}^{N} \sum_{k,m=0}^{N} \sum_{n=0}^{2} \sum_{s=S_{j}+1}^{N} S_{jk} P_{n} (\beta_{k} v_{s}^{(c)}) \left[\delta_{km} v_{s}^{(c)} \phi_{0} \beta_{k} v_{s}^{(c)} \right] \gamma_{km} .$$

$$\frac{\left[c_{s}^{(+)} B_{m}^{0} (+v_{s}^{(c)}) e^{-\frac{x}{v_{s}} \frac{1}{(c)}}{\sum_{s=0}^{N} (+v_{s}^{(c)}) e^{-\frac{x}{v_{s}} \frac{1}{(c)}} \right] \frac{2n+1}{2} P_{n} (\mu) g_{j} (E) \quad (4.41)$$

$$\Phi_{c}^{II}(x,E,\mu) = -\sqrt{M(E)} \frac{L}{\sum_{j=0}^{L}} \frac{L}{k_{j}} \frac{L}{\sum_{j=0}^{N}} \frac{\frac{1}{2}(N+1)(L+1)}{\sum_{j=0}^{N}} S_{jk} Q_{n}(\beta_{k} v_{g}(c)) v_{s}(c) v_{kn}(c) v_{kn$$

Vamos mostrar que $\Phi_c^{(I)}(x, E, \mu) \in \Phi_c^{(I)}(x, E, \mu)$ dadas pelas equações (4.41) e (4.42) são aproximações para $\Phi_{c1}^{(FL-II)} = \frac{(FL-II)}{c^2}$, dadas, respectivamente, pelas équações (4.38) e (4.39).

Considerándo (4.38) e (4.39), multiplicando ambos os membros por $P_n(\mu)$ e integrando em relação a μ entre -1 e +1, obtemos:

$$\int_{-1}^{1} P_{n}(\mu) \phi_{c1}(\mathbf{x}, \mathbf{E}, \mu) d\mu = \phi_{c1}(\mathbf{x}, \mathbf{E})_{n}$$
(4.43)

$$\int_{-1}^{1} \frac{(FL-II)}{p_n(\mu)\phi_{c2}} \frac{(FL-II)}{(x,E,\mu)d\mu} = \Phi_{c2} \frac{(FL-II)}{(x,E)} n$$
(4.44)

com:

$$\phi_{c1}^{(FL-II)} = \sqrt{M(E)} \sum_{j=0}^{L} \sum_{k,m=0}^{L} S_{jk} \int_{-\frac{1}{\beta_L}}^{\frac{1}{\beta_L}} dv \cdot v \cdot \gamma_{km} C_1(v) wm(v) e^{-\frac{w}{v}} g_j(E) .$$

$$\frac{1}{2} \int_{-1}^{1} \frac{1}{\beta_{k} \nu - \mu} P_{n}(\mu) d\mu$$
 (4.45)

$$\Phi_{c^{2}}^{(FL-II)} = \sqrt{M(E)} \sum_{j=0}^{L} \sum_{k=0}^{L} s_{jk} \int_{-\frac{1}{\beta_{L}}}^{\frac{1}{\beta_{L}}} d\nu C_{1}(\nu) \lambda_{k}(\nu) e^{-\frac{\nu}{\nu}} g_{j}(E) \int_{-1}^{1} \delta(\beta_{k}\nu - \mu) P_{0}(\mu) d\mu,$$

$$(4.46)$$

tendo tonado o valor principal da integral em relação a μ onde comparece $\langle \frac{1}{\beta_K^+\nu-\mu}\rangle$ no integrando.

Como se pode demonstrar que:

$$\frac{1}{2} \mathscr{P} \int_{-1}^{1} \frac{1}{\beta_k \nu - \mu} P_n(\mu) d\mu = -Q_n(\beta_k \nu)$$
(4.47)

obtemos:

$$-\phi_{c1} \underbrace{(FL-II)}_{(x,E)_{n}} = \sqrt{M(E)} \underbrace{\sum_{j=0}^{L} \sum_{k,m=0}^{L} s_{jk}}_{j=0} \int_{k,m=0}^{\frac{1}{\beta_{L}}} dv_{\circ}v_{\circ}C_{1}(v) \gamma_{km}w_{m}(v) e^{\frac{v}{v}}g_{j}(E)Q_{n}(\beta_{k}v)$$

$$(4.48)$$

$$\phi_{c2} \stackrel{(FL-II)}{(x,E)}_{n} = \sqrt{M(E)} \sum_{j=0}^{L} \sum_{k=0}^{L} s_{jk} \int_{-\frac{1}{\beta_{L}}}^{\frac{1}{\beta_{L}}} dv_{*}C_{1}(v)\lambda_{k}(v)e^{\frac{-x}{\nu}}g_{j}(E)P_{n}(\beta_{k}v) \qquad (4.49)$$

٠

Podemos pôr, portanto:

.

$$\Phi_{c1}^{(FL-II)} = \sqrt{M(E)} \sum_{j=0}^{L} \sum_{k,m=0}^{L} \sum_{n=0}^{\infty} \frac{2n+1}{2} s_{jk} \int_{-\frac{1}{\beta_L}}^{\frac{1}{\beta_L}} dv \cdot v \cdot \gamma_{km}^{o} C(v) v_{jm}(v) e^{-\frac{v}{\beta_j}} (E) Q_n(\beta_k v) P_n(u)$$

$$(4.50)$$

$$\phi_{C2}(\mathbf{x}, \mathbf{E}, \boldsymbol{\mu}) = \sqrt{M(\mathbf{E})} \sum_{j=0}^{L} \sum_{k=0}^{L} \sum_{n=0}^{\infty} \frac{2n+1}{2} \mathbf{s}_{jk} \int_{-\frac{1}{B_{L}}}^{\frac{1}{B_{L}}} dv \cdot C_{\mathbf{I}}(\boldsymbol{\nu}) \lambda_{k}(\boldsymbol{\nu}) e^{-\frac{v}{v}} \mathbf{g}_{j}(\mathbf{E}) \mathbf{P}_{n}(\boldsymbol{\beta}_{k}\boldsymbol{\nu}) \mathbf{P}_{n}(\boldsymbol{\mu}),$$

$$(4.51)$$

tendo eliminado a indicação que deveríamos tomar a parte principal da integral sobre dy, desde que a contribuição do eventual ponto singular $\beta_k v = \mu$ foi considerada quando da integração que definiu $Q_n(\beta_k v)$.

De fato, para $|\beta_k v| < 1$, a (A-1.37) nos permite escrever:

$$\lambda_{k}(v) = \sum_{m=0}^{L} \left[\overline{\delta}_{km} - v Q_{0}(\beta_{k}v) \gamma_{km} \right] w_{m}(v)$$
(4.54)

bastando notar que⁽²⁹⁾:

$$Q_p(\mathbf{x}) = \arctan |\mathbf{x}| < 1$$
 (4.55)

Portanto, messe caso, (4.51) coincide com a (4.52) (FL-II)

Para $|\beta_k v| > 1$, a demonstração de que $\Phi_{c2}(x, E, \mu)$ dada por (4.51) se anula é imediata, pois

$$\sum_{n=0}^{\infty} \frac{2n+1}{2} P_n(\beta_k v) P_n(\mu) \approx \delta(\beta_k v - \mu)$$

(FL-II) Suponhamos agora que $\Phi_{C2}(x,E,\mu)$ seja aproximada considerando, tanto para $|\beta_k v| < 1$ como para $|\beta_L v| > |\beta_k v| > 1$, a expressão (4.52), com um nű mero suficientemente grande de têrmos da somatória sôbre n.

Ou seja que:

$$\Phi_{c2}^{(\mathrm{FL-II})} = \Psi(E) \xrightarrow{L}_{j=0}^{L} \sum_{k,m=0}^{L} \sum_{n=0}^{N_{1}} \frac{2n+1}{2} S_{jk} \int_{-\frac{1}{\beta_{L}}}^{\frac{1}{\beta_{L}}} dv \left[\overline{\delta}_{km} - v Q_{0}(\beta_{k}v) \gamma_{km}^{0} \right] C_{1}(v) w_{m}(v)$$

$$= \frac{-x}{v} \cdot g_{j}(E) P_{n}(\beta_{k}v) P_{n}(u) \qquad (4.56)$$

para todo $|\beta_k v| \leq |\beta_t v|$

(FL-II) A relação entre $\Phi_c^{(I)}(x,E,\mu)$ dada por (4.41) e a $\Phi_{c2}^{(x,E,\mu)}$ a-proximada por (4.56) pode ser vista se, para N=N₁>>1, aproximarmos a soma toria sobre os s em (4.41) por uma integral.

Teremos então, para todo $|\beta_{k}v| \leq |\beta_{L}v|$: $\mathfrak{D}_{\mathcal{C}}^{(I)}(x, \mathcal{E}, \mu) \stackrel{\sim}{=} \stackrel{\mathbb{M}(\mathcal{E})}{\overset{\mathbb{L}}{\longrightarrow}} \stackrel{\mathbb{L}}{\overset{\mathbb{L}}{\longrightarrow}} \stackrel{\mathbb{N}_{1}}{\overset{\mathbb{Z}_{n+1}}{\longrightarrow}} \stackrel{\mathbb{S}_{1}}{\overset{\mathbb{Z}_{n+1}}{\longrightarrow}} \stackrel{\mathbb{S}_{1}}{\overset{\mathbb{Z}_{n+1}}{\longrightarrow}} \stackrel{\mathbb{S}_{1}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}{\overset{\mathbb{S}_{1}}{\longrightarrow}}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}_{1}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{C}}}}{\overset{\mathbb{S}}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset{\mathbb{S}}}{\longrightarrow}} \stackrel{\mathbb{C}}}{\overset$ $C(v)_{u}B_{m}^{0}(v)_{u}e^{-\frac{x}{v}}B_{j}(E)P_{n}(B_{k}v)P_{n}(\mu),$ (4.57) METITUTO DI DILLGIA ATOMICA

tendo re-arranjado os têrmos de (4.41) e eliminado os índices de $v_s^{(c)}$. (FL-II) A equivalência entre $\Phi_{c2}^{(x,E,\mu)}$, aproximada por (4.56), e a

A equivalência entre $\Phi_{c2}(x, E, \mu)$, aproximada por (4.56), e a $\Phi_c^{(1)}(x, E, \mu)$, aproximada por (4.57), parece não poder ser demonstrada em geral. Podemos, no entanto, esperar, dada a semelhança de estrutura mate mática das duas expressões, que a descrição da parcela do fluxo de neutrons descrita por (4.57) não se afaste muito da que seria obtida utilizando (4.56).

(FL-II) Resta analisar a relação entre $\Phi_{c1}^{(FL-II)}(x,E,\mu) \in \Phi_{c}^{(I)}(x,E,\mu)$, ou se ja, a relação entre (4.50) e (4.42).

(FL-II) Utilizando, tanto para $\Phi_{c2}(x,E,\mu)$ como para $\Phi_{c}^{II}(x,E,\mu)$, as mesmas aproximações feitas na análise anterior, obtemos imediatamente as seguintes equações aproximadas:

$$(FL-II) = (\mathbf{x}, \mathbf{E}, \mu) = (\mathbf{W}, \mathbf{E})$$

$$\sum_{j=0}^{L} \sum_{k,m=0}^{L} \sum_{n=0}^{N_1} \frac{2n+1}{2} S_{jk} \int_{-\frac{1}{\beta_L}}^{\frac{1}{\beta_L}} dv \cdot v \cdot \gamma_{km}^{\mathbf{O}} C_1(v) w_m(v) e^{-\frac{w}{v}} g_j(\mathbf{E}) .$$

$$Q_n(\beta_k v) P_n(\mu)$$
 (4.58)

$$\Phi_{\mathbf{c}}^{\mathrm{II}}(\mathbf{x},\mathbf{E},\mathbf{u}) = -\sqrt{\mathbf{M}(\mathbf{E})} \sum_{\mathbf{j}=0}^{\mathbf{L}} \sum_{\mathbf{k},\mathbf{m}=0}^{\mathbf{L}} \sum_{\mathbf{n}=0}^{\mathbf{N}_{\mathrm{I}}} \frac{2\mathbf{n}+\mathbf{l}}{2} \mathbf{s}_{\mathbf{j}\mathbf{k}} \int_{-\frac{1}{\beta_{\mathrm{L}}}}^{\frac{1}{\beta_{\mathrm{L}}}} dv_{*}v_{*}\gamma_{\mathbf{k}\mathbf{m}}^{\circ} C(v) B_{\mathbf{m}}^{\circ}(v) e^{-\frac{v}{v}}.$$

$$(\mathfrak{E}) \cdot Q_n(\mathfrak{a}_k v) \mathfrak{P}_n(\mathfrak{p})$$
 (4.59)

para v tal que $|\beta_k v| < |\beta_L v|$ para qualquer β_k .

Novamente encontramos suma semelhança de estrutura matemática, mas a equivalência entre (4.58) e (4.59) também não conseguimos provar.

Resumindo: a expressão para o espectro de neutrons corresponden te aos $v_s^{(c)}$ do método PEA, numa aproximação L-N, apresenta uma estrutura matemática semelhante ao de espectro misto de FL-II; mas a equivalência entre ambos não conseguimos demonstrar, ao contrario do que ocorre quando se considera o espectro discreto puro.

Esta situação, como havíamos notado, se apresenta já no caso mono-energético. E seria interessante que fosse feita uma enálise mais completa dessa equivalência atravês, por exemplo, do estudo comparativo de um problema onde a componente contínua do fluxo desempenhe pepel importante, como é o caso de problema de Milne⁽¹⁾.

CAPÍTULO V

OBSERVAÇÕES E CONCLUSÕES SÕBRE A APROXIMAÇÃO L-N NO MÉTODO PEA

5,1 - Observações Gerais

O método PEA desenvolvido principalmente nos capítulos III e IV constitue uma extensão, so caso poli-energético, do formalismo clássico das esféricas harmônicas, corrente e intensamente utilizado na obten ção de soluções da equação de transporte mono-energética.

Desejamos notar que os resultados do capitulo IV dificilmente poderiam ter sido obtidos sem a diagonalização de (V) efetuada no capitu lo III. Tal diagonalização permitiu-nos desenvolver um formalismo que, quando aplicado a problemas concretos, envolve operações em que comparecem funções algébricas - como no caso mono-energético - e não funções ma triciais como ocorreria se tal diagonalização não fosse efetuada. Esperamos que esta simplificação importante nos permita extender o formalismo desenvolvido a outras geometrias, em especial ãs com simetria cilíndrica, e isto sem complexidades matemáticas que possívelmente tornariam quase impraticável seu uso em problemas de interêsse para a Física de Re atores.

Por outro lado, a estreita analogia existente entre o método PEA e o das esféricas harmônicas clássico, levava-nos a esperar que tôdas as dificuldades e peculiaridades dêste último se apresentassem, aumentadas mesmo, no método PEA; em particular, os problemas associados à descrição do espectro contínuo persistiram, como era previsível.

For outro lado, cremos que esta mesma analogia estreita será um útil guia para tentarmos extender ao caso poli-energético certas variantes modernas do método das esféricas harmônicas, em particular as re lacionadas com o novo esquema de truncamento desenvolvido por Pomraeia; ning⁽³⁴⁻³⁶⁾ e no qual enfase especial é dada as dificuldades relacionadas com o comportamento da solução aproximada nas vizinhanças de superf<u>í</u> cies de separação.

Vários problemas foram, nesta tese, deixados em aberto. Entre

êles, desejamos citar dois que nos parecem mais importantes:

- I) o caráter completo das auto-funções, do método PEA, para as variáveis angular e espacial, não foi demonstrado, ao contrário do que ocorre no formalismo de Ferziger e Leonard. Esta situação não é característica do método PEA mas, conforme observa Wigner⁽²³⁾, se apresenta para todos os métodos de aproximação.
- II)o caráter real dos v foi demonstrado, no Apêndice A-2, para uma certa classe de problemas. Se as condições físicas forem tais que existam v complexos, tôda a análise feita no capítulo IV não se aplica. É uma situação nada satisfatória que, certamente, necessitará ser escla recida, através de uma análise minuciosa das implicações físicas das condições que levam a v complexos.

5,2 - Conclusões

Nêste trabalho utilizamos consistentemente o método das esféri cas harmônicas para o tratamento da dependência angular das soluções da equação de transporte poli-energética, no caso de geometria plana e núcleo de espalhamento isotrópico.

A consideração de núcleo de espalhamento anisotrópico não introduz complicações sérias, desde que utilizemos o método geral desenvol vido por Travelli⁽²⁷⁾;

A utilidade imediata que vemos no método que apresentamos repousa na possibilidade de tratar problemas concretos sem as complicações matemáticas que decorretiam da utilização da teoria exata (angular) de Ferziger e Leonard. Esta conjectura pode ser qualitativamente justifica da se notarmos que, nos problemas de maior interêsse para a Física de Re atores, comparecem sempre médias de grandezas físicas; e em tais médias, o fluxo de neutrons desempenha um papel de fator de pêso. Assim, em geral, há uma preponderância grande dos valores do fluxo em regiões espaciais afastadas das superfícies de descontinuidade (ou de separação entre meios). Ora, como em tais regiões afastadas, a componente associada aos v_s^(d) é que é dominante, e esta é bem descrita no formalismo PEA, jus

. 65 .

tifica-se nossa conjectura da utilidade de tal formalismo no campo dos problemas reais de Física de Reatores. Aliás, a correção desta conjectu ra poderia ser baseada no próprio sucesso do método das esféricas harmônicas nos problemas mono-energéticos, pude aquela preponderância do fluxo associado aos v discretos foi verificada.

Partindo dessa constatação do caso mono-energético, a correção de sua extensão ao caso poli-energético dependeria tão somente da descri ção adequada, por um número finito de têrmos, da dependência energética do fluxo de neutrons. Que tal descriçãos aproximada no método PEA seja a dequada, não poderemos provar; mas certamente será melhor que uma descri ção drasticamente simplificada como o é a da aproximação mono-energética.

Finalizando, o campo de aplicação do método PEA pode ser grande; mas, como todo método de aproximação, somente a comparação entre os resultados de sua aplicação a casos específicos e os resultados ou teóri cos exatos ou experimentais, poderá determinar suas vantagens c limitações.

AFENDICE A-1

O METODO DE FERZIGER E LEONARD

A-1.1 - Introdução

O problema da obtenção de soluções aproximadas da equação de transporte poli-energética, em geometria plana e com núcleo de espalhamen to isotrópico, foi recentemente tratado, entre outros autores, por Ferziger e Leonard, em uma série de três trabalhos indicados a seguir por:

No primeiro trabalho —FL-I- a equação (2.1) especializada para espalhamento isotrópico e com

$$\Sigma(E) = constante$$

(aproximação de secção de choque independente da energia) foi resolvida através de:

a) uma expansão de Ψ(x,E,y) em uma série conveniente de polinômios ortogonais na variável E;

 b) solução do sistema de equações integro-diferenciais para os coeficientes da expansão acima, por um método exato desenvolvido por Case⁽³⁸⁾ para a equação de transporte mono-energética em geometria plana e espalhamento isotrópico.

A possibilidade de aplicar o método de Case ao sistema de equações obtido após a expansão em polinômios da energia, decorreu do fato de que em tal sistema não havia têrmos de acoplamento entre as diversas equa ções; em outras palavras: após o desenvolvimento, em série de polinômios em E, o sistema de equações resultante era constituido de um conjunto não acoplado de equações de transporte mono-energéticas.

Notemos que a ausência de acoplamento entre as equações do sistema era consequência direta da admissão de constância da secção de cho-

/
que total expressa por (4.1).

A eliminação da restrição acima foi conseguida por Ferziger e Leonard nos dois trabalhos subsequentes: FL-II e FL-III.

Em FL-II, após uma expansão em polinômios ortogonais na variável E, o sistema de equações integro-diferenciais, agora acopladas, foi resolvido depois de um desacoplamento parcial efetuado através de uma transformação de similitude. As soluções formais foram obtidas e seu carater completo e ortogonal foi provado.

Finalmente, em FL-III, foi tratado um problema especial, de interêsse para as aplicações: o de provar o caráter completo em relação a μ , das soluções formais obtidas em FL-II para μ nos intervalos o $\{-1\}$ e⁻ -1}-io; a prova da completabilidade para μ no intervalo -1}-ir+1 fora feita em FL-II.

O trabalho FL-II, tratando do caso de secção de choque dependen te da energia, é o que mais nos interessa. E, neste Apéndice, apresentaremos, com razoável detalhe, um resumo do trabalho FL-II, com o intuito de fácilitar a compreensão de comparações desenvolvidas essencialmente no capítulo IV desta tese.

A-1.2 - Auto-valores e auto-funções no método FL

Considerando a equação (2.21) e especializando-a para o caso de espalhamento isotrópico, obtemos a equação básica tratada em FL-II;

$$\mu \frac{\partial}{\partial x} f(x,\mu) > + (\forall) | f(x,\mu) > = \frac{1}{2} \int_{-1}^{1} d\mu' \{\alpha^{o}\} | f(x,\mu') > \qquad (A-1,1)$$

A invariância translacional de (A-1,1) sugere que se ponha:

$$|f(x,y)\rangle = e^{-x/v}|f(v,y)\rangle$$
. (A-1.2)

A equação (A-11) formece então:

· . 68 ,

. 69 .

$$\left(-\frac{\mu}{\nu}\left(\mathbf{I}\right)+\left(\mathbf{V}\right)\right)\left|\mathbf{f}(\nu,\mu)\right\rangle = \frac{1}{2}\left(\alpha^{0}\right)\left|\mathbf{f}(\nu)\right\rangle \qquad (A-1.3)$$

$$|f(v)\rangle = \int_{-1}^{1} d\mu' |f(v,\mu')\rangle$$
 (A-1.4)

Con

No sistema (A-1.4) há acoplamento total entre as componentes de $(r_{\nu,\mu})$ introduzido tento pela matriz (V) como pela (α°) , como ocorreu para o sistema básico (2.35) no método PEA.

Como ja notamos, um desacoplamento total não é possível de ser obtido; e Ferziger e Leonard - em FL-II - introduziram uma transformação de similitude induzida por uma matriz ortogonal (S) (a mesma que utilizamos em (2.36)) tal que a matriz simétrica (V) se transformasse numa matriz diagonal (U):

$$(S)^{-1}$$
 (V) $(S) = (U)$ (A-1.6)

$$U_{jk} = \beta_k \delta_{jk}$$
 (A-1.7)

Como $E(E) \ge 1$, relembremos que os elementos β_k da matriz diagonal (U) são todos maiores de 1; e continuarão a ser, ordenados de maneira tal que:

$$\beta_0 > \beta_1 > \beta_2 > \dots \beta_L \ge 1 \tag{A-1.8}$$

Multiplicando a equação (A-1.3) por (S)⁻¹ obtem-se:

$$\left(-\frac{\mu}{\nu}\left(\mathbf{I}\right) + \left(\mathbf{u}_{0}\right)\left(\left|\mathbf{w}(\nu,\mu)\right\rangle\right] = \frac{1}{2}\left(\gamma^{0}\right)\left|\mathbf{w}(\nu)\right\rangle \qquad (A-1.9)$$

com

$$|w(v,\mu)\rangle = (S)^{-1} |f(v,\mu)\rangle; |w(v)\rangle = (S)^{-1} |f(v)\rangle$$
 (A-1.10)

$$(\gamma^{o}) = (s)^{-1} (\alpha^{o}) (s),$$
 (A-1.11)

Para prosseguir sua análise, FL observa que há duas regiões importantes para v.

a) \vee tal que não pertença ao intervalo $\left(-\frac{1}{\beta_L}, +\frac{1}{\beta_L}\right)$; (A-1.12) b) \vee tal que pertença ao intervalo $\left(-\frac{1}{\beta_L}, +\frac{1}{\beta_L}\right)$. (A-1.13)

Se v satisfizer, a (A-1.12), ou seja, se

$$\nu \left(\left(-\frac{1}{\beta_L}, \frac{1}{\beta_L} \right) \right)$$

segue que a matriz diagonal

`

$$(U(v,\mu)) = -\frac{\mu}{v} (I) + (U)$$
 (A-1.14)

terá seus elementos diferentes de zero para todo μ no intervalo (-1,1). Não será, assim, singular e existirá uma matriz diagonal $(U(\nu,\mu))^{-1}$ com elementos dados por:

$$(U(v, \mu))^{-1}_{jk^{i}} = \frac{1}{-\frac{\mu}{v} + \beta_{j}} \delta_{jk}$$
 (A-1.15)

A solução de (A-1.9) será dada por

$$|w(v, \mu)\rangle = \frac{1}{2} (U(v, \mu))^{-1} \{\gamma^0\} |w(v)\rangle$$
 (A-1.16)

Integrando ambos os membros em relação a µ, entre -1 e +1,obte-

$$|w(v)\rangle = \frac{1}{2} \int_{-1}^{1} d\mu (\tilde{v}(v,\mu))^{-1} \cdot (\gamma^{\circ}) |w(v)\rangle$$
 (A-1.17)

mos:

Dus

$$w_{j}(v) = \frac{1}{2} \int_{-1}^{\cdot 1} \frac{d\mu_{*}v}{\beta_{j}v - \mu} \cdot \sum_{k=0}^{L} \gamma_{jk}^{o} w_{k}(v) \qquad (A-1.18)$$

$$w_{j}(v) = v \operatorname{arctgh} \left(\frac{1}{\beta_{j}v}\right) = \int_{k=0}^{1} \gamma_{jk}^{o} w_{k}(v) \qquad (A-1.19)$$

Introduzindo uma matriz (T(v)) de elementos definidos por:

$$T(v)_{jk} = \delta_{jk} \cdot v \cdot \operatorname{arctgh} \left(\frac{1}{\beta_{+}v}\right)$$
 (A-1.20)

a (A-1.19) pode ser escrita:

$$|w(v)\rangle = (T(v))(\gamma^{0})|w(v)\rangle$$
 (A-1.21)

 $((I)-(T(v))(\gamma^{0}))\{w(v) > = o \qquad (A-1,22)$

A equação matricial (A-1,22) so terá soluções não triviais se v for solução da equação característica:

 $\left| \left| \left(I \right) - \left(T(v) \right) \left(\gamma^{0} \right) \right| \right| = 0$ (A-1.23)

Haverá, assim, um conjunto $\{v_{g}\}$ de auto-valores ⁽²¹⁾ aos quais estarão associadas auto-funções $\{w(v_{g})\}$. Na realidade, como o determinam te é uma função par de v, se $(+v_{g})$ for um auto-valor, $(-v_{g})$ também sê-loá; e ao par estarão associadas duas auto-funções $|w(+v_{g})>$ e $|w(-v_{g})>$.

Determinadas as auto-funções $|w(tv_{p})\rangle$, e (A-1.16) formece as auto-funções $|w(tv_{p},\mu)\rangle$ e, através da aplicação do operadora (S), obtemos os auto-vetores $(f(tv_{p},\mu))$ soluções de (A-1.3):

。72 。

$$|w(\pm v_{g}, \mu)\rangle = \frac{1}{2} (U(\pm v_{g}, \mu))^{-1} (\gamma) |w(\pm v_{g})\rangle$$
 (A-1.24)

$$|f(*v_{\ell},\mu)\rangle = \frac{1}{2} (S) (U(*v_{\ell},\mu)) ^{-1} (\gamma) |w(*v_{\ell})\rangle$$
 (A-1.25)

As componentes de $|f(*v_{\mu},\mu)\rangle$ serão:

$$f_{j}(*\nu_{\ell},\mu) = \frac{1}{2} \sum_{k_{p}=0}^{L} S_{jk} \frac{\nu_{\ell}}{\beta_{k}\nu_{\ell}*\mu} \gamma_{km}^{o} \omega_{m}(\nu_{\ell}) \qquad (A-1.26)$$

Há, assim, para $v \notin (-\frac{1}{\beta_L}, \frac{1}{\beta_L})$ - real ou complexo - um espectro discreto de auto-valores e auto-vetores associado à equação básica(A-1.3). Para $v \varepsilon (-\frac{1}{\beta_L}, \frac{1}{\beta_L})$, a matriz diagonal (U) definida por(A-1.14) será singular. A solução formal adotada por T é uma extensão da solução formal proposta por Case⁽³⁸⁾ para o caso mono-energético.

De fato, FL propõe como solução formal da equação (A-1.9) a se guinte:

$$|w(v,\mu)\rangle = \frac{1}{2} \left[\mathcal{P}(U(v,\mu))^{-1} \right] (\gamma) (w(v)) + (\Gamma(v,\mu)) \qquad (A-1.27)$$

onde indicamos por $\mathcal{P}(U(\nu,\mu))^{-1}$ que deve ser tomado o valor principal de cada elemento da matriz diagonal $(U(\nu,\mu))$; $e(\Gamma(\nu;\mu))$ é uma matriz coluna de elementos dados por:

 $\Gamma(v_{\mu}\mu) = \lambda_{j}(v) \ \delta(\beta_{j}v - \mu) \qquad (A-1.28)$

onde $\lambda_{i}(v)$ é uma fúnção no momento arbitrária.

Se $v \notin \left(-\frac{1}{\beta_L}, \frac{1}{\beta_L}\right)$, a (A-1.27) se reduz a (A-1.16) cuja solução explícita jã foi obtida.

Se
$$v \in \left(-\frac{1}{\beta_L}, \frac{1}{\beta_L}\right)$$
, integrando em relação a μ ambos os membros

de (A-1.27) entre (-1, +1), obtemos:

$$|w(v)\rangle = \frac{1}{2} \int_{-1}^{1} (U(v,\mu))^{-1} d\mu_{*}(\gamma) |w(v)\rangle + |\Gamma_{1}(v)\rangle \qquad (A-1.29)$$

com

$$\Gamma_{1}(v)_{j} = \lambda_{j}(v)H(1-|B_{j}v|)$$
 (A-1.30)

e H(x) a função de Heaviside:

$$H(x) = \begin{bmatrix} 0 & para & x < 0 \\ 1 & para & x > 1 \end{bmatrix}$$
 (A-1.31)

Para analisar a estrutura da equação (À~1,29) vamos escrevê-la como:

$$w_{j}(v) = \frac{1}{2} \int_{-1}^{1} \frac{v d\mu}{\beta_{j} v - \mu} \sum_{k=0}^{L} \gamma_{jk}^{\sigma} w_{k}(v) + \lambda_{j}(v) H(1 - |\beta_{j}v|) \quad (A-1.32)$$

Recordando que os β_j foram ordenados numa sequência decrescente, consideremos a figura abaixo:

Para um dado β_j, havera dois intervalos de interêsse para v real:

$$\begin{bmatrix} \mathbf{I}_{\beta_{j}} \neq |\beta_{L} v| > |\beta_{j} v| > 1 \\ \\ \\ \\ \frac{1}{\beta_{T}} > v < \frac{1}{\beta_{T}} \end{bmatrix}$$
(A-1.33)

 $II_{\beta} + |\beta_{j} \vee| < I$ (A-1.34)

No intervalo I_{β_j} , $H(1-|\beta_j v|) = o e os w_j(v)$ devem satisfazer a

$$w_{j}(v) = \operatorname{aretgh} \left(\frac{1}{\beta_{j}v}\right) \sum_{k=0}^{L} \gamma_{jk} w_{k}(v)$$
 (A-1.35)

que coincide formalmente com a (A-1.19). Os auto-valores v_2 que ainda sa tisfazem à equação característica (A-1.23) mas que caem no intervalo I_{β_j} definido por (A-1.33), pertencerão a um novo intervalo discreto fornecendo auto-funções discretas $w_j(v_2)$ perfeitamente determinadas (a menos de uma constante).

No intervalo II_{β_1}, no entanto, temos uma situação diferente. De fato, como agora, para um dado β_1 , tem-se $|\beta_1 v| < 1$, a (A-1.32) nos dá:

$$w_{j}(v) = v. \operatorname{arctgh} (\beta_{j}v) \begin{cases} L & \gamma_{jk}^{o} \\ k = o \end{cases} w_{k}(v) + \lambda_{j}(v), \qquad (A-1.36) \end{cases}$$

Escrevendo;

$$\lambda_{j}(v) = w_{j}(v) - v \operatorname{arctgh} (\beta_{j}v) \sum_{k=0}^{L} \gamma_{jk}^{0} w_{k}(v) \qquad (A-1.37)$$

e

e notando que os $w_k(v)$ são agora funções arbitrárias de v desde que êste pertença ao intervalo II_{\$\beta}, conclue-se que existe um espectro contínuo. As auto-funções dêsse espectro contínuo serão:

$$f_{j}(v, \mu) = \frac{1}{2} \sum_{k,m=0}^{L} s_{jk} \, \mathfrak{P}\left(\frac{v}{\beta_{k}v - \mu}\right) \gamma_{km}^{o} w_{m}(v) + \sum_{k=0}^{L} s_{jk} \lambda_{k}(v) \, \delta(\beta_{k}v - \mu)$$
(A-1.38)

Desejamos ainda acrescentar que, para satisfazer condições de contôrno específicas, é necessário determinar as funções arbitrárias $w_{m}(v)$ que comparecem em (A-1.38). Isto leva a problemas analíticos que não são simples, ⁽³⁷⁾, o que tira do método de FL muito do seu valor nas aplicações concretas. Como exemplo, podemos citar que no cálculo do fator de desvan tagem para o caso de espalhamento isotrópico e geometria plana, a determi nação das funções $w_{m}(v)$ é feita através de soluções de um sistema de equa ções integrais tipo Fredholm; e isto após um extenso cálculo de desacopla mento de equações integrais singulares acopladas ⁽²²⁾.

Estas dificuldades analíticas constituiram poderoso incentivo para o desenvolvimento do método que apresentamos, nesta tese, nos capítu los II e III.

A solução geral da equação básica (A-1.1), utilizando o método de FL-II será, coletando os resultados parciais obtidos:

$$\Psi(x, E, \mu) = \sqrt{M(E)} \begin{bmatrix} \sum_{j=0}^{n} & n \\ j & \sum_{j=0}^{n} & B_j \langle E \rangle \left(a_{(+)s} & f_j(v_s, \mu) e^{-\frac{x}{v_s}} + \right) \\ \end{bmatrix}$$

$$+a_{(-)s}f_{j}(-v_{s},v)e^{\frac{1}{v}s}$$
 +

+
$$\sum_{j=0}^{L} g_{j}(E) \int_{-\frac{1}{\beta_{L}}}^{\frac{1}{\beta_{L}}} f_{j}(v,\mu) e^{-\frac{x}{v}s} dv$$
 (A-1.39)

. 75 .

entendendo-se que a integral deve ser considerada como uma somatória das \cdots eventuais auto-funções do espectro discreto para v no intervalo tipo I_β (eq. 4.37).

Esta apresentação, razoàvelmente extensa, do método de Ferziger e Leonard pareceu-nos útil para tornar mais compreensível a análise feita no capítulo IV, do comportamento das soluções obtidas pelo método PEA quando o número de têrmos do desenvolvimento em polinômios de Legendre tende para infinito.

. 76 .

APÊNDICE A-2

ANÁLISE DO CARÁTER REAL DAS RAIZES DE $\Delta(v) = 0$ (eq.3.3)

Desejamos analisar as condições físicas em que as raizes da equação

$$\Delta(v) = 0 \tag{3.3}$$

.

são reais.

ŧ

Para isso, consideremos o sistema (2.39) escrito como:

$$(n+1) | B^{n+1}(v) > + | B^{n-1}(v) > = v(2n+1) [(U) - (\gamma^{n})] | B^{n}(v) > (n=0,1,\ldots,N-1)] (2.39)$$

$$(N | B^{N-1}(v) > = v(2N+1) [(U) - (\gamma^{N})] | B^{N}(v) > [(U) - (\gamma^{N})] | B^{N}(v) >$$

Introduzindo duas matrizes (A) e (C) da forma
$$(27)$$
:

.

pode-se ver imediatamente que o sistema (2.39) pode ser escrito sob a forma seguinte:

(A)
$$|B_{L}^{N}\rangle = v(c) |B_{L}^{N}\rangle$$
, (A-2.3)

onde:

- (A) e (C) são matrizes quadradas de ordem (N+1)(L+1); $|B_L^N > \tilde{e}$ um vetor (matriz coluna) de (N+1) (L+1) elementos da

forma

$$|B_{L}^{N}\rangle = \begin{vmatrix} |B^{O}(v)\rangle \\ |B^{I}(v)\rangle \\ |B^{N}(v)\rangle \end{vmatrix} \qquad (A-2.4)$$

com os $|B^{II}(v)\rangle$ (n=0,1,...N) matrizes coluna de (L+1) elementos.

As matrizes que comparecem como elementos de matriz (A), por exemplo, (2), são matrizes diagonais, de ordem (L+L), com elementos dados por $\{2\}_{ij} = 2\delta_{ij}$ (i,j=0,1,...L), e são também matrizes quadradas as que comparecem como elementos cde (C).

Notemos inicialmente que, no formalismo PEA, as matrizes (\mathfrak{U}) e (\mathfrak{f}^n) (n=0,1,...N) são tôdas simétricas e reais, conforme notamos no ca pítulo II.

. 79 .

Introduzindo o vetor $\langle B_L^{N*} |$ - matriz linha de ordem (N+1)(L+1)definido como a matriz conjugada transposta de $|B_L^N\rangle$, obtemos de (A-2.3):

$$\langle \mathbf{B}_{\mathrm{L}}^{\mathrm{N}\star} | (\mathbf{A}) | \mathbf{B}_{\mathrm{L}}^{\mathrm{N}} \simeq \upsilon \langle \mathbf{B}_{\mathrm{L}}^{\mathrm{N}\star} | (\mathbf{C}) | \mathbf{B}_{\mathrm{L}}^{\mathrm{N}} \rangle \qquad (\mathrm{A}-2.5)$$

Tomando o complexo conjugado de cada têrmo de (2.3) obtemos, por raciocínio análogo ao desenvolvido, a seguinte equação:

$$|{}^{ (A-2.6)$$

$$\langle B_{L}^{N*}|(A)|B_{L}^{N} \rangle = \langle B_{L}^{N}|(A)^{*}|B_{L}^{N*}\rangle = \nu \langle B_{L}^{N*}|(C)|B_{L}^{N}\rangle = \nu^{*} \langle B_{L}^{N}|(C)^{*}|B_{L}^{N*}\rangle \quad (A-2.7)$$

Como (A) e (C) são matrizes hermitianas (reais e simétricas), segue que:

- .

$$\langle B_{L}^{N*} | \{A\} | B_{L}^{N} \rangle = \langle B_{L}^{N} | \{A\}^{*} | B_{L}^{N*} \rangle$$
 (A-2.8)

$$\langle B_{L}^{N*} | (C) | B_{L}^{N} \rangle = \langle B_{L}^{N} | (C)^{*} | B_{L}^{N*} \rangle$$
 (A-2.9)

Portanto:

2 - 0

$$(v-v^*) < B_L^{N^*} | (C) | B_L^{N^*} = 0$$
 (A-2.10)

Logo, v será real se:

$$< B_{L}^{N*} | (C) | B_{L}^{N} \neq 0$$
 (A-2.11)

o que será verdadeiro se (C) for uma matriz positiva definida $^{(39)}$;

Como a condição necessária e suficiente para que uma matriz seja positiva definida é que seus auto-valores sejam positivos, os v serão reais para a classe de problemas físicos onde a condição acima for satisfeita.

Mesmo para meios puramente moderadores, não parece ser possível demonstrar que (C) seja positiva definida, em geral. E, conforme in dicamos no capítulo V, se existirem v complexos, encontramo-nos em face de uma situação bastante difícil. Logo, a admissão feita no capítulo IV, de serem todos os v reais, é uma hipótese que necessita um estudo mais completo, para precisar seu campo de validade.

. 80 .

SUTINITO IN EVERGIA ATOMICA

BIBLIOGRAFIA

- 1 B. Davison "Neutron Transport Theory"; Oxford University Press (1958).
- 2 A.M.Weinberg and E.P.Wigner "The Physical Theory of Neutron Chain Reactors"; the University of Chicago Press (1958).
- 3 R.V.Megheblian and D.K.Holmes Reactor Analysis; McGraw Hill (1960).
- 4 A.Leonard and J.H.Ferziger, Ann. Phys., 22, 192 (1963).
- 5 M.M.R.Williams, Nucl. Sci. Eng., 18, 260 (1964).
- 6 J. Arkuszewski, BNL 10045, Brookhaven National Laboratory (1966) e Nucl. Sci. Eng., <u>27</u>, 104 (1967).
- 7 J.Mika, Nucl. Sci. Eng., 22, 235 (1965).
- 8 M.M.R.Williams, J. Math. Phys., XLV, 1, 64 (1966).
- 9 M.M.R.Williams, Nucl. Sci. Eng., 27, 511 (1967).
- 10 E.Wigner and J.E.Wilkins Jr, AECD 2275 (1948).
- 11 J.E.Wilkins Jr, CP 2481.
- 12 K.H. Beckurts and K.Wirtz, "Neutron Physics"; Springer Verlag (1964).
- 13 W.R.Conkie, Nucl. Sci. Eng., 1, 295 (1960).
- 14 R.R.Kladnik and I.Kuscer, Nucl. Sci. Eng., <u>11</u>, 116 (1961).
- 15 Z. Weiss, Nukleonika, <u>VI</u>, 11, 703 (1961).
- 16 M.Kazarnovsky, Proc. Geneva Conf., 16 (1958).
- 17 W.Hafele and L.Dresner, Nucl. Sci. Eng., 7, 304 (1960).
- 18 M.M.R.Williams "The Slowing Down and Thermalization of Neutrons"; North Holland Publishing Co. (1966).
- 19 W.R.Conkie, Nucl. Sci. Eng., 18, 370 (1964).
- 20 N.C.Francis "Reactor Physics in the Resonance and Thermal Regions" edited by A.J.Goodjohn and G.C.Pomraning; MIT Press (1966).
- 21 A.Leonard and Joel H.Ferziger, Nucl. Sci. Eng., 26, 170 (1966).
- 22 Alan H.Robinson "Transport Theoretic Calculations of the Disadvantage Factor", Tese de Doutoramento; Stanford University (1965).
- 23 E.Wigner, Proc. Symp. App. Math., 11, 89 (1961).
- 24 E.Richard Cohen Proc. Geneva Conf., 5, 406 (1958)
- 25 M.S.Nelkin and G.J.Habetler, Nucl. Sci. Eng., 1, 280 (1956).

- 26 A.Travelli and Gerald P.Calame, Nucl. Sci. Eng., 20, 414 (1964).
- 27 A.Travelli "Thermal Neutron Transients in Various P-N Approximations", Tese de Doutoramento; Rensselaer Polytechnic Institute, Troy, New York (1963).
- 28 · W. Kofink "Studies of the Spherical Harmonics Method in Neutron Transport Theory" - I; ORNL - 2334 (1957); - II : ORNL - 2358 (1957).
- 29 E. Jahnke and F.Emde "Tables of Functions"; Dover (1945).
- 30 E.T.Whittaker and G.N. Watson "Modern Analysis"; Cambridge Univer sity Press (1940).
- 31 A.Erdelyi, F. Oberhettinger and F.G.Tricomi, "Higher Transcendantal Functions", vol II; McGraw-Hill Co. (1953); ibid, vol I; McGraw-Hill Co. (1953).
- 32 Donald H. Roy and Raymond L.Murray, BAW 245 (1964); Babcock and Wilcox Co., Lynchburg, Va., USA.
- 33 S.Gallone, G.Chillardotti, Il Nuovo Cimento, 31, 203 (1964).
- 34 G.C.Pomraning, Nucleonik, 6, 348 (1965).
- 35 G.C.Pomraning, Nucl. Sci. Eng., <u>22</u>, 328 (1965).
- 36 M.Copic, Nucl. Sci. Eng., 26, 289 (1966).
- 37 A.Leonard and Joel H.Ferziger, Nucl. Sci. Eng., 26, 181 (1966).
- 38 K.M.Case, Ann. of Phys., 9, 1 (1960).
- 39 R.Bellman "Introduction to Matrix Analysis", McGraw-Hill (1960).

AGRADECIMENTOS

Desejamos expressar nossos agradecimentos:

Aos Professores Shigueo Watanabe e Oscar Sala pelo incentivo prestado na realização dêste trabalho e ao Professor Jayme Tiomno e Professora Wilma Sonia C. Nehl, pela completa revisão, acompanhada de úteis sugestões, do original desta tese.

Ao Licenciado Antonio Soares Gouvêa pela elaboração dos programas digitais e pela realização dos cálculos no computador do Instituto de Energia Atômica.

À Srta. Terezinha Caires pela dedicação e competência no complexo trabalho de datilografia a duas esferas, e ao Sr. Adhemar Dias da Silva pelo interêsse e eficiência demonstrados durante o processo de impressão.

Ao Instituto de Energia Atômica, pelas facilidades que seu Diretor Professor Rômulo Ribeiro Pieroní, nos ofereceu, inclusive pondo à nossa disposição, com prioridade, o uso do computador IBM-1620.

Ao Professor Tibor David diretor da Editora Clássico-Científica, pela gentileza em nos oferecer, em tempo recorde, o material, a impressão e a confecção da capa dêste trabalho.