

1,41.0

CÁLCULOS EM TEORIA DE TRANSPORTE NO MODELO DE UM GRUPO PARA CELULA DE TRES REGIÕES

Cassio Roberto Macedo Maia

DISSERTAÇÃO E TESE IEA 148 IEA - DT - 148 FEVEREIRO/1979

CONSELHO DELIBERATIVO

MEMBROS

Klaus Reinach Presidente Roberto D'Utra Vuz Helcio Modesto da Costa Ivano Humbert Marchesi Almar Cervellini

PARTICIPANTES

Regina Elisabete Azevedo Beretta Flávio Gori

SUPERINTENDENTE

Rômulo Ribeiro Pieroni

FEVEREIRO/1979

DISSERTAÇÃO E TESE - IEA 148 IEA - DT - 148

CÁLCULOS EM TEORIA DE TRANSPORTE NO MODELO DE UM GRUPO PARA CÉLULA DE TRÊS REGIÕES

Cassio Roberto Macedo Maia

Dissertação para obtanção do Título de "Mestre — Área Reatores Nucleares de Potência e Tecnologia do Combustível Nuclear" - Orientador Dr. Yugi Ishiguro. Apresentada e defendida em 22 de fevereiro de 1979, no Instituto de Energia Atômica.

> INSTITUTO DE ENERGIA ATÔMICA SÃO PAULO - BRASIL

Série DISSERTAÇÃO E TESE IEA

INIS Categories and Descriptors E21 A31 Transport theory One-group theory Reactor cells Slabs Thermal utilization Disadvantage factor Spherical harmonics method Accuracy

NOTA: A redação, ortugrafia, conceitos e revisão final são de responsabilidade dos autores.

SUMÁRIO

Página

CAPÍTULO I

INTRODUÇÃO	1
1.1 — Considerações Gerais	1
1.2 - Métodos Aplicados em Teoria de Transporte	2
1.3 - Histórico	4
1.4 - Objetivo	6

CAPÍTULO II

FUNDAMENTOS TEÓRICOS	6
2.1 – A Equação de Transporte de Nêutrons	6
2.2 — Modelo de um Grupo, Geometria Plana e Espalhamento Isotrópico	8
2.3 — Solução pela Técnica de Expansão em Auto-Funções Singulares	11
2.4 – O Método da Invariança e a Função H	16
2.5 — Ortogonalidade e Normalização das Auto-Funções	18

CAPÍTULO III

O PROBLEMA DA CÉLULA DE TRÊS REGIÕES	20
3.1 – Definição do Problema e Desenvolvimento Analítico	20
3.2 – Fator de Utilização Térmica e Fatores de Desvantagem Térmica	35

CAPÍTULO IV

RESULTADOS NUMÉRICOS E COMPARAÇÕES	39
4.1 - Resultados Numéricos Obtidos pelo Método Exato	39
4.2 – Comparações com o Método P _N	41
4.3 Comparações para o Caso Particular da Célula de Duas Regiões	43

•

CAPÍTULO V

CONCLUSÕES, COMENTÁRIOS E SUGESTÕES	75

APÉNDICE A

TABELA DE INTEGRAIS	76
Integrais que Envolvem Autofunções do Mesmo Meio	76
Integrais que Envolvem Autofunções de Meios Distintos	76
Integrais que Envolvem o Termo de Fonte	77

APÊNDICE B

APLICAÇÃO DO MÉTODO P _N AO PROBLEMA DA CÉLULA DE TRÊS REGIÕES	79
B.1 – O Método de Harmônicos Esféricos em Geometria Plana	79
B.2 – O problema da Célula de Três Regiões	82
B.3 – Fluxo, Corrente, Fator de Utilização Térmica e Fatores de Desvantagem Térmica	84

APÉNDICE C

PROCEDIMENTO NUMÉRICO COMPUTACIONAL	87
C.1 – Método Exato	87
C.2 – Método P _N	89
REFERÊNCIAS BIBLIOGRÁFICAS	92

CÁLCULOS EM TEORIA DE TRANSPORTE NO MODELO DE UM GRUPO PARA CÉLULAS DE TRÊS REGIÕES

Cassio Roberto Macedo Maia

RESUMO

Células de três regiões são analisadas numericamente com base na solução exata da equação de transporte de um grupo de energia com espalhamento isotrópico, como um modelo idealizado de arranjos de combustível tipo placa para reatores nucleares.

Um sistema de equações integrais regulares para os coeficientes da expansão em autofunções singulares é deduzido utilizando-se as relações de ortogonalidade de meio intervalo e um método de regularização desenvolvido recentemente. Soluções numéricas são obtidas resolvendo-se este sistema de equações interativamente.

Os fatores de utilização e de desvantagem térmicas bem como as distribuições de corrente e fluxo são apresentadas pela primeira vez para vários conjuntos de parâmetros.

A exatidão do método P_N é também analisada comparativamente aos resultados exatos.

CAPÍTULO I

INTRODUÇÃO

1.1 - Considerações Gerais

Um dos requisitos fundamentais para o projeto de desenvolvimento de reatores nucleares é saber como o comportamento da distribuição neutrônica determina a operação de tais sistemas. Consequentemente, um dos problemas centrais em pesquisa de reatores é predizer com detalhes e precisão esta distribuição.

Este problema é tratado pela teoria de transporte de nêutrons, que estuda a migração dos nêu:rons através do meio material, e que obtém a sua distribuição no espaço, tempo e energia. É necessário, então, um profundo conhecimento das características, propriedades e limitações de grandezas microscópicas e macroscópicas do sistema físico, tais como secções de choque, composição do material, geometria, etc.

A equação fundamental que descreve o transporte de nêutrons é uma variante linear da equação de Boltzmann, facilmente deduzida a partir do princípio da conservação do número de nêutrons em um elemento de voluma, de maneira semelhante a outros problemas clássicos como transporte de massa, condução da calor, etc.

Aprovade para publicação em Fevereiro/1979.

Infelizmente a equação de transporte é de difícil solução em vista da complexidade das funções e do número de variáveis que definem o problema(?). Em um reator nuclear, por exemplo, é impossível fazer uma formulação matemática explícita e fiel, devido a diversos fatores tais como: arranjo geométrico e perfil, dos elementos constitutintes, que implicam num alto grau de heterogeneidade; grande número de isótopos com propriedades distintas que variam de concentração no tempo e no espaço; energia dos nêutrons que variam desde alguns MeV, quando são emitidos durante a fissão, até a ordem de frações de eV, quando entram em equilíbrio térmico com o meio; variação complexa das secções de choque com a energia; espalhamento anisotrópico e outros fatores que determinam o comportamento da população neutrônica no sistema.

Portanto, encontrar soluções para a equação de transporte, somente é possível se o sistema for simplificado ou idealizado de tal maneira que se obtenha uma formulação matemática explícita. Cria-se assim um modelo onde métodos são aplicados e desenvolvidos em busca de novas e mais eficientes técnicas matemáticas que permitam investigar a estrutura das equações e solucionar problemas mais realísticos.

As simplificações e idealizações do sistema são feitas de acordo com as limitações e interesses das soluções a serem obtidas.

Assim, sob certas condições, pode-se considerar que as propriedades do sistema, num determinado intervalo de tempo, não se modificam. A dependência temporal é desprezada e tem-se, então, o sistema operando no estado estacionário.

A dependência espacial de problemas com geometria arbitrária é difícil ou impossível de ser tratada. O que se faz geralmente é iniciar os estudos com um modelo idealizado em geometria plana e, desta forma, os parâmetros dependerão somente de uma coordenada espacial.

Quanto à dependência energética da equação de transporte, dois tratamentos podem ser feitos:

- a) divide-sa o intervalo de energia de interesse em um número finito de subintervalos, denominados grupos de energia. Os parâmetros nucleares são obtidos através de médias adequadas em cada intervalo. A teoria que trata deste modelo é a Teoria de Multigrupo.
- b) considera-se a energia como uma variável contínua e expande-se os termos dependentes em polinômios que tem o mesmo intervalo de definição, ou seja, de zero a infinito, como é o caso dos Polinômios de Laguerre, Tchebycheff, etc.

Quanto ao fato do espalhamento exibir o carater de ser anisotrópico, o que geralmente se faz para englobar este efeito é expandir a dependência angular das secções de choque em Polinômios de Legendre, truncando a expansão num determinado termo. Assim, truncando a série no termo correspondente à ordem zero, tem-se o modelo de espalhamento isotrópico; truncando o termo de ordem um, tem-se o modelo de espalhamento linearmente anisotrópico, etc.

No presente trabalho, considerar-se-á a teoria do transporte no modelo de um grupo de energia, geometria plana, estado estacionário e espalhamento isotrópico.

1.2 - Métodos Aplicados em Teoria de Transporte

A necessidade de se obter soluções das dificuldades matemáticas encontradas, geraram duas correntes básicas de pesquisa em cálculos neutrônicos:

[•] A grandeze básice de equeção de transporte é a densidade angular de nêutrons, ume função de sete variáveis: $N(r,v,t) = N(x,y,z,v_x,v_y,v_z,t)$.

- a) Métodos aproximados obtenção de soluções matematicamente aproximadas por meio de modelos mais realísticos.
- b) Métodos exatos obtenção de soluções matematicamente exatas por meio de modelos altamente idealizados.

Os métodos aproximados são de grande interesse por serem úteis em aplicações práticas, como o cálculo de reatores, etc, enquanto que os métodos exatos são importantes por servirem como padrão de comparação para os métodos aproximados, além do que, em algumas situações especiais podem traduzir com boa aproximação a realidade física.

Quanto aos métodos de aplicação prática o primeiro a ser desenvolvido foi baseado numa versão simplificada da teoria de transporte: a teoria da difusão⁽²⁸⁾. Esta versão simplifica o cálculo da variação espacial da distribuição neutrônica, ignorando a sua dependência angular, e impondo uma direção preferencial aos nêutrons através da lei de Fick. Porém, com estas simplificações a teoria não oferece bons resultado: para pontos situados próximos a fontes e fronteiras físicas, não podendo ser aplicada em pequenos sistemas, como células, onde cálculos precisos são fundamentais.

Desenvolve-se, então, vários métodos em que soluçõees aproximadas da teoria de transporte são obtidas com boa precisão. Destacam-se aqui o método de harmônicos esféricos, também conhecido como aproximação P_N, e o método de ordenadas discretas S_N. Estes dois métodos, em linhas gerais, propõe uma aproximação da dependência angular do fluxo de nêutrons.

O método P_N , foi aplicado primeiramente por Marshak, e desenvolvido detalhadamente por Mark⁽³⁵⁾. Consiste, basicamente, na expansão de todas as funções angulares em termos de harmônicos estéricos(*), e em truncar a série no tempo de ordem (N + 1) para fins computacionais.

O método S_N, desenvolvido por Carlson⁽⁶⁾, consiste em se estabelecer um conjunto de direções discretas para a dependência angular, transformando as integrais angulares da equação de transporte em somatórias e as derivadas angulares em diferenças de ângulos discretos.

Vê-se, pois, que os métodos abordados tratam somente de dependência angular e que, nas aplicações práticas, deve-se levar em conta, também, a dependência energética e o fato do espalhamento ser anisotrópico. Desta maneira, o que se faz é aplicar estes métodos ou ao modelo multigrupo ou ao dependente da energia, com espalhamento isotrópico, ou ao linearmente anisotrópico, etc.

Com relação aos métodos exatos, o primeiro a ser aplicado na teoria de transporte de nêutrons foi o da transformada de Fourier, desenvolvido por Wiener e Hopf⁽¹⁸⁾. Neste método aplica-se a transformada de Fourier nas variáveis espaciais e após algumas manipulações algébricas a solução é encontrada por meio da antitransformada. No entanto, devido à dificuldade em se obter a antitransformada, a aplicação deste método fica limitado a uma classe muito restrita de problemas.

Outro método exato que vem sendo muito empregado na solução de problemas de transporte de nêutrons e que será a base analítica deste trabalho foi introduzido por K. M. Case em 1960⁽⁷⁾. É o método de expansão em autofunções singulares ou simplesmente método de Case, que consiste fundamentalmente de uma separação de variáveis adequadas, da qual se gera um conjunto completo de autofunções singulares ortogonais. A solução do problema será, então, uma combinação linear das autofunções cujos coeficientes de expansão são determinados com o uso das propriedades de ortogonalidade e normalização das autofunções e através das condições de contôrno.

O método de Case foi aplicado primeiramente em modelos de um grupo de energia e geometria plana. No entanto, vem solucionar diversos problemas, quer através do modelo de dois grupos, como o

^{*} Em geometria plana e esférica, o método consiste simplesmente numa expensito em Polinômios de Legendre.

de multigrupos, e em outras geometrias. A estrutura matemática deste método permite ainda que ele seja aplicado em outros campos, tais como transferência radiativa, propagação do som, física do plasma, etc.

Uma alternativa para tratar problemas de transporte é o método da Invariança ou "Invariant Imbedding", que foi introduzido por Ambarzumiann⁽²⁾ e extensivamente aplicado por Chandrasekar⁽¹⁰⁾ em problemas de transferência radiativa. Este método consiste, basicamente, em formular equações integrais para as funções que descrevem a reflexão e transmissão da radiação através do princípio da invariança. Este método pode ser empregado para diversos tipos de radiações tais como fótons, raios γ , e, também no estudo de transporte de nêutrons.

1.3 - Histórico

Os primeiros trabalhos relacionados com problemas de transporte apareceram no fim do século no campo da Astrofísica. Pesquisas sobre diversos problemas de transferência radiativa levaram a um aprofundamento da equação de Boltzmann e culminaram num modelo formulado por Milne em 1921⁽³⁸⁾, para estudos da distribuição angular da radiação emitida por uma estrela, cuja solução matemática foi somente encontrada em 1931 por Wiener e Hopf⁽¹⁸⁾, que utilizaram a técnica da transformada de Fourier. E neste contexto é que foram introduzidos os primeiros estudos em transporte de nêutrons.

Em consequência das primeiras experiências da fissão controlada e da construção dos primeiros reatores nucleares, a teoria de transporte de nêutrons foi desenvolvida primeiramente através dos métods aproximados (P_N , S_N , Monte Carlo e outros)^(3,12) devido a necessidade de se ter aplicações práticas.

No que diz respeito aos métodos exatos, a teoria de transporte tomou grande impulso no momento em que o método de expansão em autofunções singulares foi estabelecido. A idéia de expandir soluções em autofunções singulares foi proposta independentemente por Davison⁽¹¹⁾ em 1945, o qual chegou a dar algumas provas básicas, e por Wigner⁽⁵⁴⁾ em 1959, mas foi aplicada primeiramente por Van Kampen⁽⁵²⁾ em 1955 na investigação de oscilação de plasma. No entanto, somente em 1960 é que Case demonstrou convincentemente a generalidade e o poder do método de expansão em autofunções singulares.

Assim, através da aplicação deste novo método vários problemas de geometria plana e um grupo de energia vem sendo estudados e solucionados. Destacam-se, entre outros, o problema da placa crítica sem refletores, resolvido por Zelasny⁽⁵⁶⁾ em 1961 e por Mitsis⁽⁴⁰⁾ em 1962, e problemas de multiregiões resolvidos analiticamente por Kuszell⁽²⁷⁾. Em ambos foi assumido espalhamento isotrópico. Problemas em que se considera o espalhamento anisotrópico foram estudados pela primeira vez em 1961 por Mika⁽³⁷⁾. Em 1963 Case e Zweifel⁽⁸⁾ deram maior consistência matemática ao método através da bemonstração dos teoremas de existência e unicidade das autofunções.

Em 1964, um grande progresso foi alcançado através do trabalho de Kuscer et al⁽²⁶⁾ que demonstrando as propriedades de ortogonalidade das autofunções para meio intervalo, isto é, para $\mu \in (0,1)(^*)$, solucionaram de maneira direta o problema de um semi-espaço com espalhamento isotrópico, facilitando e ampliando o campo de aplicação do método. Problemas de meios finitos foram resolvidos, com o uso destas propriedades, no mesmo ano por McCormick e Mendelson⁽³⁴⁾ e as primeiras aplicações, em problemas com espalhamento anisotrópico, foram feitas por Shure e Natelson⁽⁴⁵⁾ e por McCormick e Kuscer⁽³³⁾, este em 1965.

Ainda em 1965, Ferziger e Robinson⁽¹⁵⁾, considerando o espalhamento isotrópico, analisaram o problema da célula de duas placas e calcularam o fator de desvantagem utilizando a técnica de expansão em autofunções de intervalo completo.

Em geometria plana, μ = cos(θ), onde θ é o ângulo compreendido entre a coordenada espacial dependente e e direção de movimento do nêutron. Intervalo completo corresponde a todas as direções, ou seja, μ€ (-1,1).

Em 1966, McCormick e Kuscer⁽³²⁾ introduziram a função H de Chandrasekhar⁽¹⁰⁾ nas relações de ortogonalidade de meio intervalo, facilitando a determinação dos coeficientes da expansão. No mesmo ano Pahor⁽⁴²⁾, utilizando as autofunções de Case, juntamente com as funções S e H de Chandrasekhar, obteve soluções para os problemas de Milne e Albedo. Nesta mesma linha, Pahor e Zweifel⁽⁴³⁾, em 1969, intruduziram uma nova técnica baseada na combinação do método da Invariança com o método de Case, demonstrando sua viabilidade para problemas de semi-espaços.

Também em 1969, Siewert e Bond⁽⁴⁶⁾, calcularam o fator de desvantagem para célula de duas placas, com espalhamento linearmente anisotrópico no moderador. No entanto, as técnicas empregadas tanto por Siewert e Bond como por Ferziger e Robinson, conduziam a um conjunto de equações integrais de Fredholm para os coeficientes de expansão, que necessitam de um tratamento especial na análise numérica, além do que, eram limitantes a problemas particulares.

Ainda em 1969, McCormick⁽³⁰⁾ e McCormick e Doyas⁽³²⁾ desenvolveram trabalhos fundamentais para problemas de meios adjacentes com espalhamento anisotrópicos. Em 1970, Ozisik e Siewert⁽⁴¹⁾ desenvolveram várias soluções particulares da equação de transporte para nêutrons monoenergéticos aplicadas a problemas de fontes externas.

Em 1975, Bukart⁽⁴⁾ e Siewert e Bukart⁽⁴⁷⁾ utilizando novamente a técnica de combinar o método da Invariança com o método de Case, obtiveram resultados para problemas de duas regiões e problemas do tipo placa refletida, com espalhamento isotrópico. Utilizando essa mesma técnica, Siewert e Ishiguro⁽⁴⁸⁾ resolveram, em 1976, o problema de Milne de dois semi-espaços adjacentes, considerando espalhamento linearmente anisotrópico nos dois meios. No entanto, esta técnica não obteve sucesso quando aplicada em problemas de multiregiões.

No decorrer destes anos, vários problemas foram resolvidos analiticamente com o uso das propriedades de ortogonalidade de intervalo completo e meio intervalo, que combinadas ou não com o método da Invariança, conduziam a obtenção dos coeficientes da expansão através de um conjunto de equações integrais singulares. No entanto, para muitos problemas não foi possível remover as singularidades destas equações integrais, permanecendo assim sem solução numérica.

Entretanto, Ishiguro⁽¹⁹⁾ propôs, recentemente, uma técnica geral para remoção das singularidades das equações integrais dos coeficientes de expansão, a regularização, aplicando-a com sucesso em problemas de semi-espaços adjacentes e meios finitos.

A aplicação do método de Case foi extendida a vários outros modelos, tal como o de dois grupos. Os primeiros resultados obtidos, através deste modelo, são devidos a Zelasny e Kuszel⁽⁵⁷⁾ em 1961. O tratamento matemático ficou mais elaborado quando em 1967 Siewert e Sieh⁽⁵⁰⁾ discutiram o teorema da completividade das autofunções no intervalo completo. Em 1968, Metcalf e Zweifel⁽³⁶⁾ resolveram problemas de semi-espaços e com os resultados obtidos apresentaram uma comparação do método exato com um método aproximado.

Em 1972, Siewert e Ishiguro⁽⁴⁹⁾ introduziram a matriz H para determinar as propriedades de ortogonalidade de meio intervalo e resolveram problemas de semi-espaços. Paralelamente Siewert et al⁽⁵¹⁾ e Burniston et al⁽⁵⁾ demonstraram sua existência e unicidade. Espelhamento anisotrópico foi considerado por Reith e Siewert⁽⁴⁴⁾ e por Ishiguro e Jorge⁽²¹⁾. Combinando o método de Case e o princípio da Invariança, Ishiguro e Maiorino⁽²²⁾ resolveram o problema de Milne em dois semi-espaços adjacentes para o modelo de dois grupos de energia.

Recentemente, diversos problemas no modelo de dois grupos foram resolvidos por Ishiguro e Garcia^(17,20) com o uso da técnica de regularização proposto por Ishiguro⁽²⁰⁾. Entre eles, destacam-se o problema da placa crítica refletida e o problema da célula de duas places.

O modelo de multigrupos e dependente de energia tem sido objeto de grande interesse e muitos problemas foram analisados e resolvidos ^(23,29,55)

1.4 - Objetivo

Este trabalho visa obter soluções exatas e resultados numéricos precisos para o problema da célula de três regiões, até então, não resolvido na teoria de transporte, utilizando-se do método de expansão em autofunções singulares no modelo de um grupo de energia, geometria plana e espalhamento isotrópic...

Aplicar-se-á neste trabalho uma técnica recente, apresentada na referência⁽¹⁹⁾, para a remoção de singularidades das equações integrais dos coeficientes de expansão.

Resultados numéricos, para este mesmo problema, são levantados aplicando-se o método P_N e uma comparação é feita entre os dois métodos.

CAPÍTULO II

FUNDAMENTOS TEÓRICOS

O método de expansão em autofunções (método de Case) para o modelo de um grupo, geometria plana e espalhamento isotrópico é apresentado neste capítulo, assim como as propriedades de ortogonalidade de meio intervalo das autofunções, necessárias para a determinação dos coeficientes de expansão.

2.1 - A Equação de Transporte de Nêutrons

A equação geral de transporte de nêutrons é decluzida a partir do princípio da conservação do número de nêutrons num volume elementar localizado em r:

$$\frac{1}{v} \frac{\partial}{\partial t} \psi(\vec{r}, \vec{\Omega}, \mathsf{E}, t) + \Omega. \nabla \psi(\vec{r}, \vec{\Omega}, \mathsf{E}, t) + \sigma(\vec{r}, \mathsf{E}, t) \psi(\vec{r}, \vec{\Omega}, \mathsf{E}, t) =$$

$$\int_{\mathsf{E}'} \int_{\Omega'} \sigma(\vec{r}, \mathsf{E'}, t) f(\vec{r}; \vec{\Omega}', \mathsf{E}' \to \vec{\Omega}, \mathsf{E}) \psi(\vec{r}, \vec{\Omega}', \mathsf{E't}) d\Omega' d\mathsf{E'} +$$

$$+ Q(\vec{r}, \vec{\Omega}, \mathsf{E}, t) \qquad (2.1.1)$$

onde:

$$\vec{\Omega} = \frac{\vec{v}}{v}$$
 = direção de movimento do nêutron

v N(r,Ω,E,t)

onde $N(\vec{r}, \vec{\Omega}, E, t)$ é a densidade angular, que representa o número médio de nêutrons no volume elementar localizado em \vec{r} , com direção $\vec{\Omega}$, energia E, no instante t, por unidade de volume, ângulo sólido e energia, e v é a velocidade escalar do nêutron.

- $\sigma(\vec{r}, E, t) = \text{seção}$ de choque macroscópica total definida como sendo a probabilidade de interação entre o nêutron e o meio por unidade de comprimento.
- $f(\vec{r}; \vec{\Omega}, E' \rightarrow \vec{\Omega}, E) =$ probabilidade de um néutron com direção $\vec{\Omega}'$ e energia E', emergir após uma colisão com o meio, com direção $\vec{\Omega}$ e energia E.
 - $\Omega(\hat{r}, \hat{\Omega}, E, t) = número de nêutrons emitidos por fontes no volume elementar localizado$ $em <math>\hat{r}$, com direção $\hat{\Omega}$, energia E, no instante t, por unidade de volume, ângulo sólido e energia.

Com respeito à dedução da equação de transporte algumas observações devem ser feitas.

- Flutuações Estatísticas do Fluxo Angular

Flutuações estatísticas não foram consideradas na equação (2.1.1) devido à sua pequena magnitude quando comparada com valor médio da densidade angular. Em algumas situações especiais, por exemplo o "start-up" do reator, estas flutuações podem levar a grandes desvios do comportamento médio especial nesse sentido deve ser feito.

- Interação Nêutron-Nêutron

Num sistema, a população de nêutrons pode ser considerada "vazia" em virtude de sua baixa densidade $(10^{10} - 10^{11} \text{ nêutrons/cm}^3)$ quando comparada com a densidade de núcleos do meio $(10^{22} \text{ núcleos/cm}^3 \text{ em sólidos})$, logo o número de interações nêutron-núcleo. Com isto, obtém-se a linearização da logo o número de interações nêutron-nêutron é desprezível com relação ao número de interações nêutron-núcleo. Com isto, obtém-se a linearização da equação de Boltzmann.

- Desintegração Radioativa

Visto que o tempo de vida dos nêutrons no meio material é insignificante comparada à sua meia-vida, desintegrações radioativas não são levadas em conta.

- Comportamento Ondulatório

Na equação (2.2.1) o nêutron é tratado como uma partícula pontual, sendo assim completamente caracterizado pela sua velocidade e posição. Para nêutrons de energia bem baixa, o comprimento de onda é comparável às distâncias interatômicas. Com isto, as secções de choque sofrem uma dependência da orientação dos néutrons. No entanto estes efeitos são desprezíveis em Teoria de Reatores.

- Nêutrons Atrasados

Para estudo de reatores no estado estacionário os efeitos devidos à nêutrons atrasados podem ser desprezados, porém, a sua presença é de real importância nos estudos de cinética de reatores.

- Polarização

Efeitos de polarização devido a interações do spin e momento magnético dos nêutrons são de pouca importância em Teoria de Reatores e portanto não foram considerados na equação (2.1.1).

Outros fatores, tais como tempo de colisão entre os nêutrons e núcleos, efeitos quânticos, etc. também não são considerados na dedução da equação geral de transporte.

Apesar de todas essas limitações, a equação de transporte representa bem a situação física, porém, como foi visto no capítulo I, soluções exatas para problemas reais são impossíveis de serem obtidos, não só por causa do tratamento matemático a ser aplicado, mas também, devido a variações complexas de certos parâmetros nucleares. Por isso, soluções exatas somente são possíveis para modelos bem idealizados, o que recentemente vem se tornando objeto de grande interesse.

2.2 - Modelo de Um Grupo, Geometria Plana e Espalhamento Isotrópico

Nesta secção será deduzida a equação de transporte de nêutrons para o caso estacionário, no modelo de um grupo, geometria plana com simetria azimutal e espalhamento isotropico. Assim sendo, as seguintes simplificações são possíveis:

- Estado Estacionário

A equação é independente do tempo:

$$\frac{\partial}{\partial t} \psi(\vec{r}, \vec{\Omega}, \mathsf{E}, t) = 0$$
 (2.2.1)

logo vern:

 $\psi = \psi(\vec{r}, \vec{\Omega}, \mathsf{E}) \tag{2.2.2a}$

$$\sigma = \sigma(\mathbf{r}, \mathbf{E}) \tag{2.2.2b}$$

$$\mathbf{Q} = \mathbf{Q}(\mathbf{r}, \mathbf{\hat{\Omega}}, \mathbf{E}) \tag{2.2.2c}$$

- Um Grupo de Energia

É assumido que todas as seções de choque são independentes da energia, portanto:

$$\sigma_{i} = \sigma_{i}(\vec{r}) \tag{2.2.3}$$

onde σ_i representa secção de choque de absorção, fissão, espalhamento elástico, etc. Portanto a secção de choque total será:

$$\sigma = \sum_{i} \sigma_{i}(\vec{r}) = \sigma(\vec{r})$$
(2.2.3a)

Por outro lado, a função distribuição angular de nêutrons emergentes após uma colisão, isto é,

é independente da energia E'. Com isto, reescreve-se:

$$\int_{\mathsf{E}} \mathbf{f}(\vec{r}; \vec{\Omega}, \mathsf{E}' \to \vec{\Omega}', \mathsf{E}') \, \mathsf{d}\mathsf{E} = \mathbf{c}(\vec{r}) \, \mathbf{f}(\vec{r}; \vec{\Omega}', \to \vec{\Omega}) \tag{2.2.4}$$

onde $f(\vec{r}; \vec{\Delta}' \rightarrow \vec{\Delta})$ é normalizada a unidade;

$$\int_{\Omega} f(\vec{r}; \vec{\Omega}' \to \vec{\Omega}) \, \mathrm{d}\vec{\Omega} = 1 \tag{2.2.5}$$

e c(r) representa o número médio de nêutrons secundários por colisão, produzidos em r:

$$\mathbf{c}(\vec{r}) = \frac{\sigma_{s}(\vec{r}) + \nu \sigma_{f}(\vec{r})}{\sigma(\vec{r})}$$
(2.2.6)

onde:

$$\sigma_{s}(\vec{r})$$
 = Secção de choque macroscópica de espalhamento.

 $\sigma_{\rm f}(\vec{r})$ = Secção de choque macroscópica de fissão.

- $\sigma(\vec{r}) =$ Secção de choque macroscópica total.
 - ν = número de nêutrons emitidos por fissão.

Substituindo os resultados obtidos acima na Eq.(2.1.1) e integrando sobre a energia, a equação de transporte fica:

$$\vec{\Omega} \cdot \nabla \psi(\vec{r},\vec{\Omega}) + \sigma(\vec{r}) \psi(\vec{r},\vec{\Omega}) =$$

$$= \sigma(\vec{r}) c(\vec{r}) \int_{\Omega} f(\vec{r};\vec{\Omega}' \to \vec{\Omega}) \psi(\vec{r},\vec{\Omega}') d\vec{\Omega}' + Q(\vec{r},\vec{\Omega}) \qquad (2.2.7)$$

onde foram redefinidas as grandezas

$$\psi(\vec{r},\vec{\Omega}) = \int \psi(\vec{r},\vec{\Omega},E) dE$$
(2.2.8a)

$$Q(\vec{r},\vec{\Omega}) = \int_{\mathsf{E}} Q(\vec{r},\vec{\Omega},\mathsf{E}) \, d\mathsf{E}$$
 (2.2.8b)

A Eq.(2.2.7) não depende da energia e num sentido geral é o mesmo que dizer que todos os nêutrons tem a mesma velocidade(*).

Meio Homogêneo

Os parâmetros nucleares independem da posição, logo:

$$\sigma(\vec{r}) = \sigma \tag{2.2.9a}$$

$$c(\vec{r}) = c$$
 (2.2.9b)

$$f(\vec{r};\vec{\Omega}' \to \vec{\Omega}) = f(\vec{\Omega}' \to \vec{\Omega})$$
 (2.2.9c)

Geometria Plana

O fluxo angular de nêutrons depende de uma coordenada espacial. Assumindo simetria azimutal, tem-se então:

$$\tilde{\Omega} \vec{\nabla} \psi(\vec{r} \cdot \vec{\Omega}) \rightarrow \mu \frac{\partial}{\partial_z} \psi(x,\mu)$$
 (2.2.10)

onde:

$$\mu = \vec{\Omega} \cdot \vec{\mathbf{2}}$$

e 2 é o versor da direção z.

Espalhamento Isotrópico

Considerando-se que a função distribuição angular depende somente do cosseno do ângulo de espalhamento $\mu = \vec{\Omega}' \cdot \vec{\Omega}$, num meio homogêneo, pode-se expandir f $(\vec{\Omega}' \rightarrow \vec{\Omega})$ em polinômios de Legendre. Assim, tem-se:

$$f(\vec{\Omega}' \to \vec{\Omega}) = \frac{1}{4\pi} \sum_{n=0}^{\infty} f_n . (2n+1) . P_n(\mu)$$
 (2.2.11)

onde P_n são polinômios de Legendre.

......

Retendo o primeiro termo da expansão obtêm-se o caso de espalhamento isotrópico:

$$f(\vec{\Omega}' \rightarrow \vec{\Omega}) = \frac{1}{4\pi}$$
 (2.2.12)

^{*} O modelo de um grupo de energia é referida algumas vezes como aproximação da secção de choque constante (10)

Com base nestas simplificações a equação de transporte fica:

$$\mu \quad \frac{d}{dz} \quad \psi(z,\mu) + \sigma \psi(z,\mu) = \frac{\sigma c}{2} \int_{-1}^{1} \psi(z,\mu') \, d\mu' + Q(z,\mu) \quad (2.2.13)$$

Definindo-se a variável ótica $x = \sigma z$, obtém-se:

$$\psi(z_{\mu}) = \psi(x_{\mu})$$
 (2.2.14a)

$$\frac{d}{dz} \psi(z,\mu) = \sigma \frac{d}{dx} \psi(x,\mu)$$
(2.2.14b)

Desta forma a equação (2.2.13) resulta em:

e

$$\mu \frac{d}{dx} \psi(x,\mu) + \psi(x,\mu) = \frac{c}{2} \int_{-1}^{1} \psi(x,\mu') d\mu' + Q(x,\mu)$$
(2.2.15)

Esta é a equação básica para o problema que será tratado neste trabalho.

2.3 - Solução pela Técnica de Expansão em Auto-Funções Singulares

Considera-se aqui, somente as soluções da equação de transporte homogênea:

$$\mu \frac{d}{dx} \psi(x,\mu) + \psi(x,\mu) = \frac{c}{2} \int_{-1}^{1} \psi(x,\mu') d\mu' \qquad (2.3.1)$$

Aplicando o método de separação de variáveis procura-se soluções da forma:

$$\psi(x,\mu) = \chi(x) \phi(\mu)$$
 (2.3.2)

onde $\chi(x)$ é função somente de χ e $\phi(\mu)$ função somente de, μ .

Dividindo (2.3.1) por $\mu\psi(x,\mu)$ e substituindo $\psi(x,\mu)$ por $\chi(x) \phi(\mu)$, tem-se:

$$\frac{1}{\chi(x)} \frac{d}{dx} \chi(x) = \frac{c}{2\mu\phi(\mu)} \int_{-1}^{1} \phi(\mu') d\mu' - \frac{1}{\mu}$$
(2.3.3)

O lado esquerdo da Eq. (2.3.3) é função somente de x, enquanto que o lado direito é função somente de μ , então, ambos deverão ser igual a uma constante, que será definida aqui como $-1/\nu$. Com isto, resulta que:

$$\frac{1}{\chi(x)} \frac{d}{dx} \chi(x) = \frac{-1}{\nu}$$

ou

$$\chi(x) = \text{constante} \cdot e^{-x/y}$$

Assim, a solução tem a seguinte forma:

$$\psi_{\nu}(x,\mu) = \phi_{\nu}(\mu) e^{-x/\nu}$$
(2.3.4)

onde $\phi_{\nu}(\mu)$ são as autofunções e ν os autovalores correspondentes a serem determinados. Por conveniência, reescreve-se as autofunções na seguinte forma:

$$\phi_{\nu}(\mu) = \phi(\nu_{\mu}\mu)$$

Substituindo a solução (2.3.4) na equação de transporte (2.3.1), verifica-se que as autofunções obedecem a seguinte equação:

$$(\nu - \mu) \phi(\nu, \mu) = \frac{1}{2} c\nu \int_{-1}^{1} \phi(\nu, \mu') d\mu'$$
 (2.3.5)

Normalizando $\phi(\nu,\mu)$ a unidade

$$\int_{-1}^{1} \phi(\nu_{\mu} \mu') \, d\mu' = 1$$
 (2.3.6)

reescreve-se a equação (2.3.5) como:

$$(\nu - \mu) \phi(\nu_{-} \mu) = \frac{1}{2} c \nu$$
 (2.3.7)

Considerando $\nu \neq \mu$ para $\mu \epsilon$ (-1,1), reescreve-se a Eq. (2.3.7) como:

$$\phi(\nu,\mu) = \frac{c\nu}{2} \frac{1}{\nu-\mu}$$
(2.3.8)

Através de (2.3.6) tem-se que:

$$1 - \frac{c\nu}{2} \int_{-1}^{1} \frac{d\mu}{\nu - \mu}$$
(2.3.9)

ou

$$\Lambda(\nu) = 0 \tag{2.3.9a}$$

onde $\Lambda(z)$ é a função de dispersão definida por:

$$\Lambda(z) = 1 - \frac{cz}{2} \int_{-1}^{1} \frac{d\mu}{z - \mu}$$
(2.3.10)

ou numa forma mais conveniente

$$\Lambda(z) = 1 - cz \tan h^{-1} \frac{1}{z}$$
(2.3.11)

Propriedades da Função de Dispersão

1) $\Lambda(z) = \Lambda(-z)$

Portanto se v_{α} é uma raiz, então, $-v_{\alpha}$ também será.

2) $\Lambda(z) = \Lambda^{*}(z^{*})$

De modo análogo ao item (1), se ν_0 é uma raiz, então ν_0^{\bullet} também será uma raiz.

- 3) $\Lambda(z)$ é analítica em todo o plano complexo, exceto, no eixo real de -1 a 1.
- 4) Pelo teorema do argumento demonstra-se que Λ(z) tem somente dois zeros no domínio definido em (3)⁽¹⁰⁾. Logo, de (1) e (2) segue as raízes de Λ(z) podem estar somente no eixo real (exceto no intervalo de -1 a 1) ou então somente no eixo imaginário.

Considerando somente o eixo real positivo, verifica-se ainda que:

$$\lim_{\nu \to 1^{+}} \Lambda(\nu) = -\infty$$
 (2.3.12a)

e

$$\lim_{y \to \infty} = 1 - c$$
 (2.3.12b)

Se c < 1, $\Lambda(\nu)$ muda de sinal entre $\nu = 1$ e $\nu = \infty$, assim deve existir uma raiz ν_{o} real neste intervalo e outra raiz $-\nu_{o}$ como decorrência da propriedade (1).

Como $\Lambda(\nu)$ possite raizes reais somente para c < 1 segue que para c > 1 as raizes serão imaginárias puras. Para c = 1, $\Lambda(\nu)$ apresenta raiz dupla no infinito.

Resumindo:

a) Para c < 1
$$\Rightarrow$$
 2 raizes reais $\pm v_{a}$

- b) Para c > 1 \Rightarrow 2 raizes imaginárias para ± ν_{o}
- c) Para $c = 1 \Rightarrow v_0 = \infty$

As raízes $\pm v_0$ representam os autovalores discretos e as autofunções a eles associados.

$$\phi(\pm\nu_{0},\mu) = \frac{c\nu_{0}}{2} \frac{1}{\nu_{0} \mp \mu}$$
(2.3.13)

Considerando agora $\nu = \mu$ para todos valores de $\mu \in (-1,1)$, procura-se soluções para a eq. (2.3.6), da seguinte forma:

$$\phi(\nu\mu) = \frac{c\nu}{2} \frac{1}{\nu - \mu} + \lambda(\nu) \,\delta(\nu - \mu) \tag{2.3.14}$$

onde $\lambda(\nu)$ é uma função a ser determinada e $\delta(\nu-\mu)$ a função delta de Dirac.

Dentre as várias possibilidades de se integrar a Eq. (2.3.14), escolheu-se a de valor principal de Cauchy, atribuindo-se assim o símbolo P para designar o valor principal. Assim,

$$\phi(\nu_{\mu}) = \frac{c\nu}{2} \frac{P}{\nu_{-\mu}} + \lambda(\nu) \,\delta(\nu_{-\mu})$$
(2.3.15)

Fazendo uso da condição de normalização, determina-se então a função $\lambda(\nu)$:

$$\frac{c\nu}{2} \int_{-1}^{1} \frac{P}{\nu - \mu} d\mu + \lambda(\nu) = 1 \implies$$

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \lim_{\epsilon \to 0^+} \left[\int_{-1}^{\nu - \epsilon} \frac{d\mu}{\nu - \mu} + \int_{\nu + \epsilon}^{1} \frac{d\mu}{\nu - \mu} \right] \implies$$

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \ln \frac{1 + \nu}{1 - \nu} \qquad (2.3.16)$$

$$\lambda(\nu) = 1 - c\nu \tan h^{-1}(\nu) \qquad (2.3.16a)$$

ou

Ve-se então que, em adição aos autovalores discretos $\pm v_0$ dados pela Eq. (2.3.9), existe um espectro contínuo de autovalores v, com $v \in (-1,1)$, sendo que as autofunções a eles associados, são dados pela Eq. (2.3.15).

14

Estabelecidas as autofunções discretas e contínuas, escreve-se a solução geral como:

$$\psi(\mathbf{x},\mu) = A(\nu_{0}) \phi(\nu_{0},\mu) e^{-\mathbf{x}/\nu_{0}} + A(-\nu_{0}) \phi(-\nu_{0},\mu) e^{\mathbf{x}/\nu_{0}}$$

$$+ \int_{-1}^{1} A(\nu) \phi(\nu,\mu) e^{-\mathbf{x}/\nu} d\nu \qquad (2.3.17)$$

onde $A(v_0)$, $A(-v_0)$ e A(v) são os coeficientes da expansão a serem determinados por meio das condições de contôrno do problema específico.

Estas condições de contôrno podem ser classificadas de duas maneiras:

De intervalo completo - que resultam em expansões do tipo:

$$f(\mu) = A(\nu_{0}) \phi(\nu_{0},\mu) + A(-\nu_{0}) \phi(-\nu_{0},\mu) +$$

$$+ \int_{-1}^{1} A(\nu) \phi(\nu,\mu) d\nu \qquad \mu \in (-1,1) \qquad (2.3.18)$$

De meio intervalo - que resultam em expansões do tipo:

$$f(\mu) = A(\nu_0) \phi(\nu_0 \mu) + A(-\nu_0) \phi(-\nu_0 \mu) +$$

$$+ \int_0^1 A(\nu) \phi(\nu_0 \mu) + \int_0^1 A(-\nu) \phi(-\nu_0 \mu) d\nu \qquad \mu \in (0,1) \qquad (2.3.19)$$

onde $f(\mu)$ é uma função conhecida.

As expansões (2.3.18) e (2.3.19) são completas⁽⁹⁾ para qualquer função $f(\mu)$ que satisfaça as condições de Hölder, e as autofunções, tanto de intervalo completo como de meio intervalo, apresentam propriedades de ortogonalidade, que possibilitam a determinação dos coeficientes de expansão.

A expansão de intervalo completo é aplicada a uma classe restrita de problemas, devido a limitada aplicação prática das propriedades de ortogonalidade deste intervalo. No entanto, condições de contôrno de intervalo completo podem ser divididas em duas de meio intervalo (exceto para problemas de meio infinito), que resultam em expansões do tipo da Eq. (2.3.19), permitindo assim, a utilização das propriedades de ortogonalidade de meio intervalo, que têm aplicação em problemas de maior interesse.

As propriedades de ortogonalidade, bem como as integrais de normalização, serão apresentadas na secção 2.5. Porém, para a obtenção de relações de ortogonalidade de meio intervalo, e consequentemente das integrais de normalização, será utilizado aqui a função H de Chandrasekhar, determinada pelo método de Invariança que será brevemente apresentado na próxima secção.

2.4 - O Método da Invariança e a Função H

Introduzido por Ambarzumian⁽²⁾, o método da Invariança foi extensivamente aplicado em problemas de transferência radiativa por Chandrasekhar⁽¹⁰⁾, e mais recentemente, em problemas de transporte neutrônico.

Considerando inicialmente, um semi-espaço homogêneo e não multiplicativo, p retende-se encontrar uma relação entre o fluxo angular incidente e o emergente na fronteira deste meio, e para tal, define-se uma função de espalhamento $S(\mu,\mu')(^*)$ tal que:

$$\psi(0,-\mu) = \frac{1}{2\mu} \int_{0}^{1} S(\mu,\mu') \psi(0,\mu') d\mu' \qquad \mu \in (0,1)$$
 (2.4.1)

onde $\psi(x,\mu)$, com $\mu \in (-1,1)$ é solução da equação de transporte (2.3.1).

Aplicando o princípio da Invariança, que garante que a função reflexão (neste caso o fluxo angular emergente) é invariante com a adição de camadas de espessura qualquer do mesmo material, tem-se que a Eq.(2.4.1) é válida para qualquer posição x no meio material. Assim a Eq. (2.4.1) é resorta como:

$$\psi(\mathbf{x},-\mu) = \frac{1}{2\mu} \int_{0}^{1} S(\mu,\mu') \psi(\mathbf{x},\mu') d\mu' \qquad \mu \in (0,1) \qquad (2.4.2)$$
$$\mathbf{x} > 0$$

Substituindo a Eq. (2.4.2) na Eq. (2.3.1) e com o auxílio do Teorema da Reciprocidade⁽¹⁰⁾ para a função $S(\mu,\mu')$ tem-se que:

$$S(\mu,\mu') = \frac{c\mu\mu'}{\mu+\mu'} H(\mu) H(\mu')$$
 (2.4.3)

onde a função $H(\mu)$, introduzida por Chandrasekhar, é definida como;

$$H(\mu) = 1 + \frac{1}{2} \int_{0}^{1} S(\mu,\mu') \frac{d\mu'}{\mu'}$$
(2.4.4)

Das equações (2.3.4) e (2.4.4) obtém-se a equação para a função H:

$$H(\mu) = 1 + \frac{c\mu}{2} H(\mu) \int_{0}^{1} \frac{H(\mu')}{\mu' + \mu} d\mu' \qquad \mu \in (0,1)$$
 (2.4.5)

Foi aprovado que a função H existe e é única para qualquer meio material⁽²⁴⁾, sendo assim, possível aplicar este método, também para meios multiplicativos.

^{*} S(μ, μ') é também chamada de Função de Espaihamento de Chandrasekhar.

A função H foi extendida a todo o plano complexo, exceto no eixo real de -1 a 0. Rearranjando a Eq. (2.4.5) tem-se que:

$$H^{-1}(z) = 1 - \frac{cz}{2} \int_{0}^{1} \frac{H(\mu)}{\mu+z} d\mu$$
 z e' real (-1,0) (2.4.6)

A função satisfaz a seguinte propriedade:

$$\int_{-1}^{1} \phi(\xi,\mu) \, d\mu = \int_{0}^{1} \phi(\xi,\mu) \, H(\mu) \, d\mu$$

$$\xi = \nu_{0} \quad \text{ou} \quad \nu \in \{0,1\}$$
(2.4.7)

portanto, tem-se que:

e

$$\frac{c\nu_{o}}{2} \int_{0}^{1c} \frac{H(\mu)}{\nu_{o}-\mu} d\mu = 1$$
 (2.4.8)

$$\lambda(\nu) H(\nu) = 1 - \frac{c\nu}{2} \int_{0}^{1} H(\mu) \frac{P}{\nu - \mu} d\mu \qquad \nu \in (0, 1)$$
 (2.4.9)

A função H também é conhecida explicitamente (47)

$$H(\mu) = \frac{1+\mu}{(\nu_{0}+\mu)} \frac{1}{\sqrt{1-c}} \exp\{-\frac{1}{\pi} \int_{0}^{1} \tan^{-1}\left(\frac{c\pi\mu'}{2\lambda(\mu')}\right) \cdot \frac{1}{\mu'+\mu} d\mu' \}$$
(2.4.10)

Das equações (2.4.6) e (2.4.8) conclui-se ainda que

$$H^{-1}(-\nu_{o}) = 0$$
 (2.4.11)

e das equações (2.4.8) e (2.4.9) que H(μ) é complexo para meios multiplicativos (c > 1).

Estas equações serão utilizadas na secção (2.5) para a determinação das relações de ortogonalidade de meio intervalo, bem como para a determinação dos coeficientes de expansão descritos no capítulo III.

2.5 - Ortogonalidade e Normalização das Autofunções

Apresenta-se nesta secção as propriedades de ortogonalidade e as integrais de normalização das autofunções de intervalo completo e meio intervalo.

Intervalo Completo

Da Eq. (2.3.5) tem-se:

$$(1 - \frac{\mu}{\nu}) \phi(\nu,\mu) = \frac{c}{2} \int_{-1}^{1} \phi(\nu,\mu') d\mu' \qquad (2.5.1)$$

Da mesma maneira, a equação para $\phi(\nu',\mu)$ é

$$(1 - \frac{\mu}{\nu})\phi(\nu',\mu) = \frac{c}{2} \int_{-1}^{1} \phi(\nu',\mu') d\mu' \qquad (2.5.2)$$

Multiplicando-se as equações (2.5.1) e (2.5.2) por $\phi(\nu',\mu)$ e $\phi(\nu,\mu)$ respectivamente, subtraindo os resultados obtidos e integrando a expressão resultante sobre μ , tem-se que:

$$\left[\frac{1}{\nu'} - \frac{1}{\nu}\right] \int_{-1}^{1} \mu \phi(\nu,\mu) \phi(\nu',\mu) d\mu = 0$$
 (2.5.3)

Se $\nu \neq \nu'$, obtém-se a relação de ortogonalidade:

$$\int_{-1}^{1} \mu \phi(\nu,\mu) \phi(\nu',\mu) \, d\mu = 0 \qquad \nu = \nu'$$
(2.5.4)

A integral de normalização é o valor que a integral da Eq. (2.5.4) assume quando $\nu' = \nu$. Para as autofunções discretas tem-se que:

$$N(\pm \nu_{o}) = \int_{-1}^{1} \mu \phi(\pm \nu_{o}, \mu) \phi(\pm \nu_{o}, \mu) d\mu$$
 (2.5.5)

Substituindo os valores de $\phi(\pm \nu_{o},\mu)$ dados pela Eq. (2.3.13) obtém-se:

$$N(\pm\nu_{o}) = \pm \frac{c\nu_{o}^{2}}{2} \left[\frac{c}{\nu_{o}^{2}-1} - \frac{1}{\nu_{o}^{2}} \right] \qquad (2.5.6)$$

Para as autofunções contínuas, a determinação da integral de normalização envolve um tratamento matemático mais eleborado, devido as singularidades das autofunções. Apresenta-se aqui, somente o resultado final, sendo que o desenvolvimento analítico pode ser encontrado na referência⁽⁹⁾.

$$\int_{-1}^{1} \mu \phi(\nu, \mu) \phi(\nu', \mu) d\mu = N(\nu) \delta(\nu - \nu')$$
(2.5.7)

onde

$$N(\nu) = \nu \left[\lambda^2 (\nu) + \left(\frac{\pi c \nu}{2} \right)^2 \right]$$
 (2.5.8)

Meio Intervalo

Expansões em autofunções de meio intervalo são completas para funções definidas no intervalo $\mu \in (0,1)^{(9)}$, no entanto, as autofunções não apresentam propriedades de ortogonalidade quando o intervalo de integração é restrito a $\mu \in (0,1)$. Porém, com o auxílio da função H, como uma função peso, é possível estebelecer algumas relações de ortogonalidade neste intervalo como será visto a seguir.

Analogamente à dedução das relações de ortogonalidade de intervalo-completo, escreve-se as seguintes equações:

$$(1 - \frac{\mu}{\nu}) \phi(\nu,\mu) = \frac{c}{2}$$
 (2.5.9)

e

$$(1 - \frac{\mu}{\nu'})\phi(\nu',\mu) = \frac{c}{2}$$
 (2.5.10)

onde são restringidos os valores de $v \in v'$:

$$0 < v_{,}v' < 1$$
 ou $v_{,}v' = v_{0}$

Multiplicando-se agora as equações (2.5.9) e (2.5.10) por $H(\mu) \phi (\nu', \mu)$ e $H(\mu)\phi (\nu, \mu)$ respectivamente, integrando-as sobre μ no intervalo de 0 a 1 e subtraindo-as têm-se que:

$$\left(\frac{1}{\nu'}-\frac{1}{\nu}\right)\int_{0}^{1}\mu H(\mu)\phi(\nu,\mu)\phi(\nu',\mu)\,d\mu = 0 \qquad (2.5.11)$$

Se $v \neq v'$, obtém-se a relação de ortogonalidade na forma:

$$\int_{0}^{1} \mu H(\mu) \phi(\nu,\mu) \phi(\nu',\mu) d\mu = 0 \qquad (2.5.12)$$

Para 0 < v, v' < 1, a integral de normalização será⁽²³⁾:

$$\int_{0}^{1} \mu H(\mu) \phi(\nu,\mu) \phi(\nu',\mu) d\mu = N(\nu) H(\nu) \delta(\nu - \nu')$$
(2.5.13)

e pera $v = v' = v_{0}$ a integral de normalização será:

$$\int_{0}^{1} \mu H(\mu) \phi(\nu_{0}\mu) \phi(\nu_{0}\mu) d\mu = N(\nu_{0}) H(\nu_{0})$$
(2.5.14)

onde $N(\nu_n)$ e $N(\nu)$ são as mesmas funções definidas nas equações (2.5.8) e (2.5.9).

Para fins de aplicação prática, outras integrais de normalização são igualmente importantes:

$$\int_{0}^{1} \mu H(\mu) \phi(\nu_{0} \nu_{0}) \phi(-\nu_{0} \mu) = \frac{c\nu_{c}}{4} H^{-1}(\nu_{0})$$
(2.5.15)

$$\int_{0}^{1} \mu H(\mu) \phi(-\nu_{0}\mu) \phi(\nu_{\mu}) d\mu = \frac{c \nu \nu_{0}}{2(\nu_{0} + \mu)} H^{-1}(\nu_{0})$$
(2.5.16)

$$\int_{0}^{1} \mu H(\mu) \phi(\nu_{0},\mu) \phi(-\nu_{0},\mu) d\mu = \frac{c \nu \nu_{0}}{2(\nu + \nu_{0})} H^{-1}(\nu)$$
(2.5.17)

$$\int_{0}^{1} \mu H(\mu) \phi(\nu,\mu) \phi(-\nu',\mu) d\mu = \frac{c\nu\nu'}{2(\nu+\nu')} H^{-1}(\nu')$$
(2.5.18)

CAPÍTULO III

O PROBLEMA DA CÉLULA DE TRÉS REGIÕES

A presenta-se neste capítulo o problema proposto para este trabalho, bem como o desenvolvimento analítico para a determinação dos coeficientes de expansão, necessários para o cálculo de algumas grandezas físicas de interesse.

3.1 - Definição do Problema e Desenvolvimento Analítico

A geometria do problema aqui considerado, é representado por um arranjo repetitivo de três placas, com meios materiais homogêneos, e distintos, conforme é visto na Figura 3.1. O meio (1) corresponde ao combust(vel e tem espessura $2\alpha_1$, o meio (2) corresponde ao encamisamento e tem espessura α_2 , e o meio (3) corresponde ao moderador com espessura $2\alpha_3$, caracterizando assim, o problema da célula de três regiões.

Devido ao grande interêsse de se conhecer precisamente o comportamento de distribuição de nêutrons térmicos no interior de tais sistemas, será considerado aqui a equação de transporte (2.2.15) somente para nêutrons térmicos, sendo que os nêutrons de fissão são assumidos como termo de fontes

20

^{*} As espessures são expresses em unidades de livres caminhos médios.

Figura 3.1 - Geometria do problema

Figura 3.2 - Célula unitária

isotrópicas e uniformemente distribuidas no moderador, onde são termalizados. Desta maneira, os elementos constituintes da célula apresentam meios não multiplicativos.

De acordo com a simetria do rpoblema, é suficiente se considerar, para modelo deste trabalho, somente uma célula unitária, conforme é visto na Figura 3.2.

Reescrevendo a equação de transporte (2.2.15) em cada meio tem-se;

$$\mu \frac{\partial}{\partial x} \psi_{i}(x,\mu) + \psi_{i}(x,\mu) = \frac{c_{i}}{2} \int_{-1}^{1} \psi_{i}(x,\mu') d\mu' + S(x,\mu) \delta_{i3}$$
(3.1.1)

onde:

i = 1	,	$-\alpha < \mathbf{x} < \boldsymbol{a}$
i = 2	,	$\alpha < x < \beta$
i = 3	,	$\beta < x < \gamma + \alpha_3$

e

$$\delta_{i3} = \{ \begin{array}{ccc} 0 & , & i \neq 3 \\ 1 & , & i = 3 \end{array} \}$$

Como foi assumido que as fontes presentes no moderador são uniformemente distribuídas e isotrópicas tem-se que:

$$S(x_{\mu}) = S$$

A solução do problema deve satisfazer as seguintes condições:

Condições de Simetria:

O problema é simétrico com relação a x = 0 e $x = \gamma' \rho \theta$ [] $e \chi | \theta'$

$$\psi_1(x,\mu) = \psi_1(-x,-\mu)$$
, $-\alpha < x < \alpha$, $\mu \in (-1,1)$ (3.1.2)

$$\psi_2(\gamma + x, \mu) = \psi_3(\gamma - x, -\mu), \quad -\alpha_3 < x < \alpha_3, \quad \mu \in (-1, 1) \quad (3.1.3)$$

Condições de Interface

A distribuição angular de nêutrons é contínua nas interfaces, assim,

$$\psi_1(\alpha,\mu) = \psi_2(\alpha,\mu)$$
, $\mu \in (-1,1)$ (3.1.4)

$$\psi_2(\beta,\mu) = \psi_3(\beta,\mu)$$
, $\mu \in (-1,1)$ (3.1.5)

A solução geral da Eq. (3.1.1) em cada meio, com as condições de simetria (3.12) e (3.1.3) já incorporadas são escritas da seguinte forma:

$$\psi_{1}(x,\mu) = B_{1}(\nu_{1}) \left\{ \phi_{1}(\nu_{1},\mu) \exp\left[-\frac{(\alpha+x)}{\nu_{1}}\right] + \phi_{1}(-\nu_{1},\mu) \exp\left[-\frac{(\alpha-x)}{\nu_{1}}\right] \right\}$$

$$+ \int_{0}^{1} B_{1}(\nu) \left\{ \phi_{1}(\nu,\mu) \exp\left[-\frac{(\alpha+x)}{\nu}\right] + \phi_{1}(-\nu,\mu) \exp\left[-\frac{(\alpha-x)}{\nu}\right] d\nu \quad ,$$

$$0 < x < \alpha \qquad (3.1.6)$$

$$\psi_{2}(x,\mu) = B_{2}(\nu_{2}) \phi_{2}(\nu_{2},\mu) \exp\left[-\frac{(-\alpha+x)}{\nu_{2}}\right] + B_{2}(-\nu_{2}) \phi_{2}(-\nu_{2},\mu) \cdot \left[-\frac{(\beta-x)}{\nu_{2}}\right] + \frac{1}{\rho} B_{2}(\nu) \phi_{2}(\nu,\mu) \exp\left[-\frac{(-\alpha+x)}{\nu}\right] d\nu + \int_{0}^{1} B_{2}(-\nu) \phi(-\nu,\mu) \cdot \exp\left[-\frac{(\beta-x)}{\nu}\right] d\nu ,$$

$$\alpha < x < \beta \qquad (3.1.7)$$

$$\psi_{3}(\mathbf{x},\mu) = \mathbf{B}_{3}(\nu_{3}) \left\{ \phi_{3}(\nu_{3},\mu) \exp\left[-\frac{(\mathbf{x}-\beta)}{\nu_{3}}\right] + \phi_{3}(-\nu_{3},\mu) \exp\left[-\frac{(2\gamma-\beta-\mathbf{x})}{\nu_{3}}\right] \right\} + \int_{0}^{1} \mathbf{B}_{3}(\nu) \left\{ \phi_{3}(\nu,\mu) \exp\left[-\frac{(\mathbf{x}-\beta)}{\nu}\right] + \phi_{3}(-\nu,\mu) \exp\left[-\frac{(2\gamma-\beta-\mathbf{x})}{\nu}\right] \right\} d\nu + \psi_{3\rho}, \qquad \beta < \mathbf{x} < \gamma \qquad (3.1.8)$$

onde $B_i(\xi)$, $\xi = v_i \circ v \epsilon$ (0,1), são os coeficientes de expansão e

$$\psi_{3p} = \frac{S}{1 - c_3} \tag{3.1.9}$$

é a solução particular exigida pela equação (3.1.1) para o meio (3).

Como o fluxo é determinado somente pela potência do reator, pode-se então, normalizá-lo em relação a fonte, fazendo: S = 1, assim,

$$\psi_{3p} = \frac{1}{1 - c_3} \tag{3.1.10}$$

A condição de continuidade do fluxo nas interfaces é, então, reescrita em dois semi-intervalos:

$$\psi_1(\alpha,\mu) = \psi_2(\alpha,\mu)$$
, $\mu \in (0,1)$ (3.1.11a)

$$\psi_1(+\alpha,-\mu) = \psi_2(\alpha,-\mu)$$
, $\mu \in (0,1)$ (3.1.11b)

$$\psi_2(\beta,\mu) = \psi_3(\beta,\mu)$$
, $\mu \in (0,1)$ (3.1.11c)

$$\psi_2(\beta,-\mu) = \psi_3(\beta,-\mu)$$
, $\mu \in (0,1)$ (3.1.11d)

Substituindo as soluções (3.1.6) e (3.1.7) e (3.1.8) nas equações acima e após algumas manipulações algébricas tem-se que:

$$B_{1}(\nu_{1}) \phi_{1}(\nu_{1},\mu) + \int_{0}^{1} B_{1}(\nu) \phi_{1}(\nu,\mu) =$$

$$= -B_{1}(\nu_{1}) \phi_{1}(-\nu_{1},\mu) E_{1}(\nu_{1}) - \int_{0}^{1} B_{1}(\nu) \phi(-\nu,\mu) E_{1}(\nu) d\nu +$$

$$+ B_{2}(\nu_{2}) \phi_{2}(-\nu_{2},\mu) + B_{2}(-\nu_{2}) \phi_{2}(\nu_{2},\mu) E_{2}(\nu_{2}) + \int_{0}^{1} B_{2}(\nu) \phi_{2}(-\nu,\mu) d\nu +$$

$$+ \int_{0}^{1} B_{2}(-\nu) \phi_{2}(\nu,\mu) E_{2}(\nu) d\nu , \quad \mu \in (0,1) \quad (3.1.12)$$

$$B_{2}(\nu_{2}) \phi_{2}(\nu_{2},\mu) + \int_{0}^{1} B_{2}(\nu) \phi_{2}(\nu,\mu) d\nu =$$

24

$$= -B_{2}(-\nu_{2}) \phi_{2}(-\nu_{2},\mu) E_{2}(\nu_{2}) - \int_{0}^{1} B_{2}(-\nu) \phi_{2}(-\nu,\mu) E_{2}(\nu) d\nu +$$

$$+ B_{1}(\nu_{1}) \phi_{1}(-\nu_{1},\mu) + \int_{0}^{1} B_{1}(\nu) \phi_{1}(-\nu,\mu) d\nu + B_{1}(\nu_{1}) \phi_{1}(\nu_{1},\mu) E_{1}(\nu_{1}) +$$

$$+ \int_{0}^{1} B_{1}(\nu) \phi_{1}(\nu,\mu) E_{1}(\nu) d\nu , \quad \mu \in (0,1) \qquad (3.1.13)$$

+
$$\int_{0}^{r} B_{1}(\nu) \phi_{1}(\nu, \mu) E_{1}(\nu) d\nu$$
, $\mu \in (0,1)$

$$B_{2}(-\nu_{2}) \phi_{2}(\nu_{2},\mu) + \int_{0}^{1} B_{2}(-\nu) \phi_{2}(\nu,\mu) d\nu =$$

= $-B_{2}(\nu_{2}) \phi_{2}(-\nu_{2},\mu) E_{2}(\nu_{2}) - \int_{0}^{1} B_{2}(\nu) \phi_{2}(-\nu,\mu) E_{2}(\nu) d\nu +$

+
$$B_3(\nu_3) \phi_3(-\nu_3\mu) + \int_0^1 B_3(\nu) \phi_3(-\nu_4\mu) d\nu + B_3(\nu_3) \phi_3(\nu_3\mu) E_3(\nu_3) + \int_0^1 B_3(\nu_3) d\nu d\nu d\nu$$

+
$$\int_{0}^{1} B_{3}(\nu) \phi_{3}(\nu,\mu) E_{3}(\nu) d\nu$$
 + $\frac{1}{1-c_{3}}$, $\mu \in (0,1)$ (3.1.14)

$$B_{3}(\nu_{3}) \phi_{3}(\nu_{3},\mu) + \int_{0}^{1} B_{3}(\nu) \phi_{3}(\nu,\mu) d\nu =$$

$$= -B_{3}(\nu_{3}) \phi_{3}(-\nu_{3},\mu) E_{3}(\nu_{3}) - \int_{0}^{1} B_{3}(\nu) \phi_{3}(-\nu,\mu) E_{3}(\nu) d\nu +$$

$$+ B_{2}(-\nu_{2}) \phi_{2}(-\nu_{2},\mu) + \int_{0}^{1} B_{2}(-\nu) \phi_{2}(-\nu,\mu) d\nu + B_{2}(\nu_{2}) \phi_{2}(\nu_{2},\mu) E_{2}(\nu_{2}) +$$

$$+ \int_{0}^{1} B_{2}(\nu) \phi_{2}(\nu,\mu) E_{2}(\nu) d\nu - \frac{1}{1-c_{3}} , \quad \mu \in (0,1) \quad (3.1.15)$$

onde:

$$E_1(\xi) = \exp(-\frac{2\alpha_1}{\xi})$$
 (3.1.16a)

$$E_2(\xi) = \exp(-\frac{\alpha_2}{\xi})$$
 (3.1.16b)

$$E_{3}(\xi) = \exp\left(-\frac{2\alpha_{3}}{\xi}\right)$$
(3.1.16c)
$$\xi = \nu \ \epsilon \ (0,1) \quad \text{ou} \quad \nu_{i} \quad , \quad i = 1,2,3$$

Utilizando-se agora das propriedades de ortogonalidade de meio intervalo é possível isolar os coeficientes de expansão do lado esquerdo das equações (3.1.12) a (3.1.15), e assim, obter um conjunto de equações integrais acopladas.

Para isolar os coeficientes $B_1(\nu_1) \in B_1(\nu)$ do meio (1), multiplica-se a Eq. (3.1.12) por $\mu H_1(\mu)\phi_1(\xi,\mu), \ \xi = \nu_1$ ou $\nu \in (0,1)$, e integra-se sobre $\mu \in (0,1)$. Apresenta-se aqui somente as equações finais, sendo que os resultados das integrais envolvidas nestas equações são listadas no Apêndice A.

$$B_{1}(\nu_{1}) = \nu_{1} N_{1}^{-1}(\nu_{1}) H_{1}^{-1}(\nu_{1}) Y(\nu_{1})$$
(3.1.17)

onde

$$Y(\nu_{1}) = -\frac{c_{1}}{4} B_{1}(\nu_{1}) H_{1}^{-1}(\nu_{1}) E_{1}(\nu_{1}) - \int_{0}^{1} B_{1}(\nu) \frac{c_{1}\nu}{2(\nu_{1}+\nu)} H_{1}^{-1}(\nu) E_{1}(\nu) d\nu + + B_{2}(-\nu_{2}) \frac{c_{2}\nu_{2}}{2(\nu_{2}-\nu_{1})} H_{1}^{-1}(-\nu_{2}) E_{2}(\nu_{2}) + B_{2}(\nu_{2}) \frac{c_{2}\nu_{2}}{2(\nu_{2}+\nu_{1})} H_{1}^{-1}(\nu_{2}) + + \int_{0}^{1} B_{2}(-\nu) \frac{[c_{2}-c_{1}]\nu}{2(\nu_{2}-\nu)} H_{1}(\nu) E_{2}(\nu) d\nu + \int_{0}^{1} B_{2}(\nu) \frac{c_{2}\nu}{2(\nu+\nu_{1})} H_{1}^{-1}(\nu) d\nu$$

$$(2.1.17a)$$

8

$$B_{1}(\nu) = \nu N_{1}^{-1}(\nu) H_{1}^{-1}(\nu) Y(\nu)$$
(3.1.18)

onde:

$$Y(\nu) = -B_{1}(\nu_{1}) \frac{c_{1}\nu_{1}}{2(\nu_{1}+\nu)} + H_{1}^{-1}(\nu) E_{1}(\nu) + \int_{0}^{1} B_{1}(\nu') \frac{c_{1}\nu_{1}}{2(\nu'+\nu)} + H_{1}^{-1}(\nu') E_{1}(\nu') d\nu' + \\ + B_{2}(-\nu_{2}) \frac{c_{2}\nu_{2}}{2(\nu_{2}-\nu)} + H_{1}^{-1}(-\nu_{2}) E_{2}(\nu_{2}) + B_{2}(\nu_{2}) \frac{c_{2}\nu_{2}}{2(\nu_{2}+\nu)} + H_{1}^{-1}(\nu_{2}) + \\ + \int_{0}^{1} B_{2}(-\nu') \frac{(c_{2}-c_{1})\nu'}{2} \frac{\rho}{(\nu'-\nu)} E_{2}(\nu') + H_{1}(\nu') d\nu' + \\ + \int_{0}^{1} B_{2}'(\nu') \frac{c_{2}\nu'}{2(\nu+\nu')} + H_{1}^{-1}(\nu') d\nu' + B_{2}(-\nu) \lambda_{1}(\nu) \lambda_{2}(\nu) E_{2}(\nu) + H_{1}(\nu) +$$

26

+
$$\frac{\pi^2}{4}$$
 c₁ c₂ ν^2 B₂(- ν) E₂(ν) H₁(ν) (3.1.18a)

sendo que

$$\lambda_{i}(\nu) = 1 - \frac{c_{i}\nu}{2} \ln \frac{1+\nu}{1-\nu}$$
(3.1.18b)

A equação da qual se obtém o coeficiente discreto $B_1(\nu_1)$ é regular, podendo ser submetida a um processo iterativo, sem grandes dificuldades, mas, a equação que fornece o coeficiente contínuo $B_1(\nu)$, por incluir o termo singular $\frac{P}{\nu' - \nu} E_2(\nu')$, requer um tratamento analítico adequado de tal forma que se remova esta singularidade, e então, ser submetida a um processo de iteração simples para a obtenção de resultados numéricos.

Uma técnica, denominada regularização e desenvolvida recentemente por Ishiguro⁽¹⁹⁾, trata deste processo de remoção de singularidades.

Basicamente, o processo consiste em gerar uma outra equação, também conhecida, que envolva uma integral singular semelhante a da equação em questão, diferenciando-se somente na exponencial do integrando, que, juntamente com o termo singular, deve ser do tipo $\frac{P}{\nu' - \nu} E(\nu)$.

Quandre se efetua a subtração entre estas duas integrais singulares, resulta o termo $\frac{E(\nu') - E(\nu)}{\nu' - \nu}$ que converge para $\nu' = \nu$, removendo assim a singularidade.

A regularização do coeficiente $B_1(\nu)$ é então obtida, multiplicando-se primeiramente a Eq. (3.1.14) por $\mu H_1(\mu)\phi_1(\nu,\mu)E_2(\nu)$ e integrando-a sobre $\mu \in (0,1)$, da qual se obtém:

$$B_{2}(-\nu_{2}) \frac{c_{2}\nu_{2}}{2(\nu_{2}-\nu)} H_{1}^{-1}(-\nu_{2}) E_{2}(\nu) + \int_{0}^{1} B_{2}(-\nu') (c_{2}-c_{1}) \nu' \frac{P}{\nu'-\nu} E_{2}(\nu) H_{1}^{-1}(\nu') d\nu' +$$

+
$$B_2(-\nu) \lambda_1(\nu) \lambda_2(\nu) H_1(\nu) E_2(\nu) + \frac{\pi^2}{4} c_1 c_2 \nu^2 B_2(-\nu) H_1(\nu) E_2(\nu) =$$

$$= -B_{2}(\nu_{2}) \frac{c_{2}\nu_{2}}{2(\nu_{2}-\nu)} H_{1}^{-1}(\nu_{2}) E_{2}(\nu) - \int_{0}^{1} B_{2}(\nu') \frac{c_{2}\nu'}{2(\nu'+\nu)} H_{1}^{-1}(\nu') E_{2}(\nu) E_{2}(\nu') d\nu' +$$

+
$$B_3(\nu_3) \frac{c_3\nu_3}{2(\nu_3+\nu)} + H_1^{-1}(\nu_3) E_2(\nu) + \int_0^1 B_2(\nu') \frac{c_2\nu'}{2(\nu'+\nu)} + H_1^{-1}(\nu') E_2(\nu) d\nu' +$$

+
$$B_3(\nu_3) \frac{c_3\nu_3}{2(\nu_3 - \nu)} + H_1^{-1}(-\nu_3) E_3(\nu_3) E_2(\nu) + \int_0^1 B_3(\nu') \frac{(c_3 - c_1)\nu}{2} \frac{P}{\nu' - \nu} E_3(\nu') +$$

•
$$E_2(\nu) H_1(\nu') d\nu' + B_3(\nu) \lambda_1(\nu) \lambda_3(\nu) H_1(\nu) E_2(\nu) E_3(\nu) +$$

+ $\frac{\pi}{4} C_1 C_3 \nu^2 B_3(\nu) H_1(\nu) E_2(\nu) E_3(\nu) + \frac{1}{1 - C_3} | 1 - \frac{C_1}{2} H_{10} | E_2(\nu)$
(3.1.19)

onde

$$H_{io} = \int_{0}^{1} H_{i}(\mu) d\mu$$

O membro do lado esquerdo da equação (3.1.9) apresenta a integral singular desejada. Somando-se agora, membro a membro, esta equação com a Eq. (3.1.18a) a igualdade se mantém e a singularidade em questão é removida.

Porém, a equação (3.1.19), gerada para a regularização do coeficiente $B_1(\nu)$ apresenta no membro do lado direito, uma integral que envolve outro termo singular do tipo

$$\frac{P}{\nu' - \nu} \, E_2(\nu) \, E_3(\nu') \, .$$

A remoção desta singularidade novamente se faz necessária. Multiplicando-se a equação (3.1.15) por $\mu H_1(\mu)\phi_1(\nu,\mu) E_2(\nu) = E_3(\nu)$ e integrando-a sobre μ , $\mu \in (0,1)$ tem-se que:

$$\begin{split} & \mathsf{B}_{3}(\nu_{3}) \; \frac{\mathsf{C}_{3}\nu_{3}}{2(\nu_{3}-\nu)} \; \; \mathsf{H}_{1}^{-1}(-\nu_{3}) \; \mathsf{E}_{2}(\nu) \; \mathsf{E}_{3}(\nu) \; \; + \\ & + \; \int_{0}^{1} \; \mathsf{B}_{3}(\nu') \; \frac{(\mathsf{C}_{3}-\mathsf{C}_{1}) \; \nu'}{2} \; \frac{\mathsf{P}}{\nu'-\nu} \; \mathsf{E}_{2}(\nu) \; \mathsf{E}_{3}(\nu) \; \mathsf{H}_{1}(\nu') \; \; d\nu' \; \; + \\ & + \; \mathsf{B}_{3}(\nu) \; \lambda_{1}(\nu) \; \lambda_{3}(\nu) \; \mathsf{H}_{1}(\nu) \; \mathsf{E}_{2}(\nu) \; \mathsf{E}_{3}(\nu) \; \; + \; \frac{\pi^{2}}{4} \; \mathsf{C}_{3}\mathsf{C}_{1} \; \nu^{2}\mathsf{B}_{3}(\nu) \; \mathsf{H}_{1}(\nu) \; \mathsf{E}_{2}(\nu) \; \mathsf{E}_{3}(\nu) \\ & = \; -\mathsf{B}_{3}(\nu_{3}) \; \frac{\mathsf{C}_{3}\nu_{3}}{2(\nu_{3}+\nu)} \; \; \mathsf{H}_{1}^{-1}(\nu_{3}) \; \mathsf{E}_{2}(\nu) \; \mathsf{E}_{3}(\nu) \; \mathsf{E}_{3}(\nu_{3}) \; - \\ & - \; \int_{0}^{1} \; \mathsf{B}_{3}(\nu') \; \frac{\mathsf{C}_{3}\nu'}{2(\nu'+\nu)} \; \; \mathsf{H}_{1}^{-1}(\nu') \; \mathsf{E}_{2}(\nu) \; \mathsf{E}_{3}(\nu) \; \mathsf{E}_{3}(\nu') \; \; d\nu' \; \; + \\ & + \; \mathsf{B}_{2}(-\nu_{2}) \; \frac{\mathsf{C}_{2}\nu_{2}}{2(\nu_{2}+\nu)} \; \; \mathsf{H}_{1}^{-1}(\nu_{2}) \; \mathsf{E}_{2}(\nu) \; \mathsf{E}_{3}(\nu) \; + \end{split}$$

=

$$+ \int_{0}^{1} B_{2}(-\nu') \frac{C_{2}\nu'}{2(\nu'+\nu)} + H_{1}^{-1}(\nu') E_{2}(\nu) E_{3}(\nu) d\nu' + \\
+ B_{2}(\nu_{2}) \frac{C_{2}\nu_{22}}{2(\nu_{2}-\nu)} + H_{1}^{-1}(-\nu_{2}) E_{2}(\nu_{2}) E_{2}(\nu) E_{3}(\nu) + \\
+ \int_{0}^{1} B_{2}(\nu) \frac{(C_{2}-C_{1})\nu'}{2} - \frac{P}{\nu'+\nu} E_{2}(\nu') E_{2}(\nu) E_{3}(\nu) + \\
+ B_{2}(\nu)\lambda_{1}(\nu)\lambda_{2}(\nu) H_{1}(\nu) E_{2}(\nu) E_{2}(\nu) E_{3}(\nu) + \\
+ \frac{\pi^{2}}{4} C_{1}C_{2}\nu^{2}B_{2}(\nu) H_{1}(\nu) E_{2}(\nu) E_{2}(\nu) E_{3}(\nu) - \frac{1}{1-C_{3}} \left[1 - \frac{C_{1}}{2} H_{10}\right] E_{2}(\nu) E_{3}(\nu)$$
(3.1.20)

O membro do lado esquerdo da equação (3.1.20) apresenta a integral pretendida com o termo singular $\frac{P}{\nu' - \nu} E_2(\nu)E_3(\nu)$. Somando-se, membro a membro, esta equação com a equação (3.1.19), obtém-se das integrais singulares envolvidas o termo

No entanto, o membro do lado direito da Eq. (3.1.20) apresenta outra integral singular, envolvendo agora, o termo

$$\frac{P}{\nu' - \nu} \ E_2(\nu') \ E_2(\nu) \ E_3(\nu) \ .$$

Para a remoção desta singularidade multiplica-se agora a Eq (3.1.13) por $\mu H_1(\mu)\phi_1(\nu,\mu)E_2(\nu)E_2(\nu)E_3(\nu)$ da qual se integra sobre μ , $\mu \in (0,1)$, para obter a seguinte equação:

$$B_{2}(\nu_{2}) = \frac{C_{2}\nu_{2}}{2(\nu_{2} - \nu)} + H_{1}^{-1}(\nu_{2}) E(\nu) + \int_{0}^{1} B_{2}(\nu') (C_{2} - C_{1}) \frac{P}{\nu' - \nu}$$

•
$$E_2(\nu) E_2(\nu) E_3(\nu) H_1(\nu') d\nu' +$$

•

$$+ \frac{\pi^{2}}{2} C_{1}C_{2}\nu^{2}H_{1}(\nu) E_{2}(\nu) E_{2}(\nu) E_{3}(\nu) =$$

$$= -B_{2}(-\nu_{2}) \frac{C_{2}\nu_{2}}{2(\nu_{2}+\nu)} H_{1}^{-1}(\nu_{2}) E_{2}(\nu_{2}) E_{2}(\nu) E_{3}(\nu) -$$

$$- \int_{0}^{1} B_{2}(-\nu) \frac{C_{2}\nu'}{2(\nu'+\nu)} H_{1}^{-1}(\nu') E_{2}(\nu') E_{2}(\nu) E_{3}(\nu) d\nu' +$$

$$+ \frac{1}{\nu} B_{1}(\nu) N_{1}(\nu) H_{1}(\nu) E(\nu) + B_{1}(\nu_{1}) \frac{C_{1}\nu_{1}}{2(\nu_{1}-\nu)} H_{1}^{-1}(\nu_{1}) E_{2}(\nu) E_{3}(\nu) e_{3}(\nu) +$$

$$+ \int_{0}^{1} B_{1}(\nu') \frac{C_{1}\nu'}{2(\nu'+\nu)} H_{1}^{-1}(\nu') E_{2}(\nu) E_{3}(\nu) d\nu \qquad (3.1.21)$$

+ $B_2(\nu) \lambda_1(\nu) \lambda_2(\nu) H_1(\nu) E_2(\nu) E_2(\nu) E_3(\nu) +$

onde

$$E(\nu) = \exp(-\frac{2\gamma}{\nu})$$
 (3.1.21a)

O membro do lado esquerdo da Eq (3.1.21) apresenta a integral singular pretendida, enquanto que os demais termos são todos regulares. Somando-se, membro a membro, esta equação com a Eq (3.1.20), remove-se a singularidade em questão, regularizando, assim, o coeficiente contínuo $B_1(\nu)$.

Este mesmo processo de regularização aplicado ao coeficiente contínuo $B_1(\nu)$, também é aplicado ao coeficiente discreto, pois, obtém-se desta maneira, equações integrais semelhantes, o que é conveniente em termos de cálculo numérico computacional. Tem-se assim que:

$$B_{1}(\xi) = \frac{\xi}{1 - E(\xi)} N_{1}^{-1}(\xi) H_{1}^{-1}(\xi) \chi(\xi)$$
(3.1.22)

onde

$$\chi(\xi) = -B_{1}(\nu_{1}) \frac{C_{1}\nu_{1}}{2(\nu_{1}+\xi)} + H_{1}^{-1}(\nu_{1}) [E_{1}(\nu_{1}) - E(\xi)E_{2}(\xi)E_{3}(\xi)] - \int_{0}^{1} B_{1}(\nu) \frac{C_{1}\nu H_{1}^{-1}(\cdot\nu)}{2(\nu+\xi)} [E_{1}(\xi) - E_{2}(\xi)E_{2}(\xi)E_{3}(\xi)] d\nu +$$
$$+ \frac{C_{3}H_{1}^{-1}(\nu)}{2(\nu+\xi)} [1 - E_{3}(\nu) E_{3}(\xi)] \} d\nu$$

$$+ \frac{E_{2}(\xi)}{1 - C_{3}} [1 - \frac{C_{1}H_{10}}{2}] [1 - E_{3}(\xi)]$$
(3.1.22a)

+
$$\int_{0}^{1} B_{3}(\nu) E_{2}(\xi) \left\{ \frac{H_{1}(\nu) [C_{3} - C_{1}]}{2(\nu - \xi)} \left[E_{3}(\nu) - E_{3}(\xi) \right] + \right\}$$

$$\frac{C_3 H_1^{-1}(\nu)}{2(\nu+\xi)} \left[1 - E_3(\nu) E_3(\xi) \right] d\nu +$$

+
$$B_{3}(\nu_{3}) C_{3}\nu_{3}E_{2}(\xi) + \frac{H_{1}^{-1}(-\nu_{3})}{2(\nu_{3}^{-}\xi)} [E_{3}(\nu_{3}) - E_{3}(\xi)] +$$

•
$$[1 - E_2(\nu) E_2(\xi)] d\nu +$$

+
$$\int_{0}^{1} \frac{C_2 \nu}{2(\nu + \xi)} H_1^{-1}(\nu) [B_2(\nu) + B_2(-\nu) E_2(\xi) E_3(\xi)]$$

•
$$[E_2(\nu) - E_2(\xi)] d\nu +$$

+
$$\int_{0}^{1} \frac{[C_2 - C_1]\nu}{2(\nu - \xi)} H_1(\nu) [B_2(-\nu) + B_2(\nu) E_2(\xi) E_3(\xi)]$$
.

•
$$[1 - E_2(\nu_2) E_2(\xi)] +$$

• $[E_2(\nu_2) - E_2(\xi)] +$

+
$$\frac{C_2^{\nu}}{2(\nu+\xi)}$$
 $H_1^{-1}(\nu_2) [B_2(\nu_2) + B_2(-\nu_2) E_2(\xi) E_3(\xi)]$.

+
$$\frac{C_2 \nu_2}{2(\nu_2 - \xi)}$$
 $H_1^{-1}(-\nu_2) [B_2(-\nu_2) + B_2(\nu_2) E_2(\xi) E_3(\xi)]$.

$$\xi = v_1$$
 ou $v \in (0,1)$

Para isolar os coeficientes $B_2(\nu_2) \in B_2(\nu)$, multiplica-se a equação (3.1.13) por $\mu H_2(\mu)\phi_2(\xi,\mu)$, $\xi = \nu_2$ ou $\nu \in (0,1)$, e integra-se sobre $\mu \in (0,1)$. De modo análogo ao que ocorre com os coeficientes do meio (1), a equação do coeficiente discreto $B_2(\nu_2)$ é regular enquanto que a equação do coeficiente contínuo $B_2(\nu)$ apresenta uma integral que envolve um termo singular do tipo

$$\frac{P}{\nu' - \nu} = E_1(\nu')$$

Para a remoção desta singularidade multiplica-se a equação (3.1.12) por $\mu H_2(\mu)\phi_2(\nu,\mu)E_1(\nu)$ e integra-se sobre $\mu \in (0,1)$. O membro do lado esquerdo da equação rasultante, apresenta a integral singular desejada, enquanto que os demais termos integrais são todos regulares. Somando-se membro a membro esta equação com a equação do coeficiente $B_2(\nu)$ a singularidade em questão é removida.

Quanto aos coeficientes $B_2(-\nu_2)$ e $B_2(-\nu)$ multiplica-se a equação (3.1.14) por $\mu H_2(\mu)\phi_2(\xi,\mu)$, $\xi = \nu_2$ ou $\nu \epsilon$ (0,1), e integra-se sobre $\mu \epsilon$ (0,1). A equação do coeficiente discreto $B_2(-\nu_2)$ é regular enquanto a equação do coeficiente contínuo $B_2(-\nu)$ apresenta uma integral que envolve o termo singular

$$\frac{\mathsf{P}}{\nu'-\nu} = \mathsf{E}_3(\nu')$$

Para a remoção desta singularidade multiplica-se a equação (3.1.15) por $\mu H_2(\mu)\phi_2(\nu,\mu)E_3(\nu)$ e integra-se sobre $\mu \in (0,1)$. O membro do lado esquerdo desta equação apresenta a integral singular desejada, enquanto que os demais termos são regulares. Somando-se, membro a membro, esta equação com a equação obtida para o coeficiente $B_2(-\nu)$ a regularidade é obtida.

Finalmente, para se obter os coeficientes do meio (3), $B_3(\nu_3) \in B_3(\nu)$, multiplica-se a equação (3.1.15) por $\mu H_3(\mu)\phi_3(\xi,\mu)$, $\xi = \nu_3$ ou $\nu \in (0,1)$, e integra-se sobre $\mu \in (0,1)$. De modo análogo aos meios (1) e (2), a equação do coeficiente discreto $B_3(\nu_3)$ é regular, enquanto que a equação do coeficiente contínuo inclui o termo singular

$$\frac{P}{\nu' - \nu} = E_2(\nu')$$
 numa de suas integrais.

A regularização do coeficiente $B_3(\nu)$ requer um processo semelhante ao do coeficiente $B_1(\nu)$, devido a persistência das singularidades. Resumidamente, o processo consiste em multiplicar-se as equações (3.1.13), (3.1.12) (3.1.14) por $\mu H_3(\mu) \phi_3(\nu, \mu) E_2(\nu)$, $\mu H_3(\mu) \phi_3(\nu, \mu) E_1(\nu) E_2(\nu) e \mu H_3(\mu) \phi_3(\nu, \mu) E_1(\nu) E_2(\nu) e_2(\nu)$, respectivamente, integra-las sobre μe (0,1) e usa-las, membro a membro, juntamente com a equação do coeficiente $B_3(\nu)$.

O mesmo processo de regularização aplicado aos dos coeficientes contínuos, também é aplicado aos coeficientes discretos $B_2(\nu_2)$, $B_2(-\nu_2)$ e $B_3(\nu_3)$, de modo análogo ao que foi feito para a obtenção do coeficiente discreto $B_1(\nu_1)$.

Apresenta-se aqui, somente os resultados finais dos coeficientes de expansão dos meios (2) e (3):

$$B_{2}(\xi) = B_{2}(-\xi) E_{2}(\xi) E_{1}(\xi) + \xi N_{2}^{-1}(\xi) H_{2}^{-1}(\xi) \chi(\xi)$$
(3.1.23)

onde

$$\chi(\xi) = + \frac{C_1 \nu_1}{2(\nu_1 - \xi)} B_1(\nu_1) H_2^{-1}(-\nu_1) [E_1(\nu_1) - E_1(\nu)] + \\ + \frac{C_1 \nu_1}{2(\nu_1 + \xi)} B_1(\nu_1) H_2^{-1}(\nu_1) [1 - E_1(\nu_1) E_1(\xi)] + \\ + \int_0^1 \frac{(C_1 - C_2) \nu}{2(\nu - \xi)} B_1(\nu) H_2(\nu) [E_1(\nu) - E_1(\xi)] d\nu + \\ + \int_0^1 \frac{C_1 \nu}{2(\nu + \xi)} B_1(\nu) H_2^{-1}(\nu) [1 - E_1(\nu) E_1(\xi)] d\nu + \\ - \frac{C_2 \nu_2}{2(\nu_2 + \xi)} H_2^{-1}(\nu_2) [B_2(-\nu_2) E_2(\nu_2) - B_2(\nu_2) E_1(\xi)] - \\ - \int_0^1 \frac{C_2 \nu}{2(\nu + \xi)} H_2^{-1}(\nu) [B_2(-\nu) E_2(\nu) - B_2(\nu) E_1(\xi)] d\nu \\ \xi = \nu_2 \quad \text{ou} \quad \nu \in (0, 1) \end{cases}$$
(3.1.23e)

$$B_{2}(-\xi) = B_{2}(\xi) E_{2}(\xi) E_{2}(\xi) + \xi N_{2}^{-1}(\xi) H_{2}^{-1}(\xi) \chi(\xi)$$
(3.1.24)

onde

$$\chi(\xi) = -\frac{C_2 \nu_2}{2(\nu_2 + \xi)} + H_2^{-1}(\nu_2) [B_2(\nu_2) E_2(\nu_2) - B_2(-\nu_2) E_2(\xi)] - \\ -\int_0^1 \frac{C_2 \nu}{2(\nu + \xi)} + H_2^{-1}(\nu) [B_2(\nu) E_2(\nu) - B_2(-\nu) E_3(\xi)] d\nu + \\ + \frac{C_3 \nu_3}{2(\nu_3 - \xi)} + B_3(\nu_3) + H_2^{-2}(-\nu_3) [E_3(\nu_3) - E_3(\xi)] +$$

+
$$\int_{0}^{1} \nu B_{1}(\nu) E_{2}(\xi) \left\{ \frac{H_{3}(\nu) (C_{1} - C_{3})}{2(\nu - \xi)} \left[E_{1}(\nu) - E_{1}(\xi) \right] + \frac{C_{1}H_{3}^{-1}(\nu)}{2(\nu + \xi)} \left[1 - E_{1}(\nu) E_{1}(\xi) \right] \right\} d\nu + \frac{C_{2}\nu_{2}}{2(\nu_{2})} H_{3}^{-1}(-\nu_{2}) \left\{ B_{2}(\nu_{2}) + B_{2}(-\nu_{2}) E_{1}(\xi) E_{2}(\xi) \right\}$$

 $\cdot [E_2(v_2) - E_2(\xi)] +$

$$\begin{split} \chi_{3}(\xi) &= C_{1}\nu_{1}B_{1}(\nu_{1})E_{2}(\xi) \left\{ \begin{array}{l} \frac{H_{3}^{-1}(-\nu_{1})}{2(\nu_{1}-\xi)} \left[E_{1}(\nu_{1}) - E_{1}(\xi) \right] + \\ &+ \frac{H_{3}^{-1}(\nu_{1})}{2(\nu_{1}+\xi)} \left[1 - E_{1}(\nu_{1})E_{1}(\xi) \right] \right\} \end{split}$$

onde

+

$$B_{3}(\xi) = \frac{\xi}{1 - E(\xi)} N_{3}^{-1}(\xi) H_{3}^{-1}(\xi) \chi(\xi) \qquad (3.1.25)$$

$$\xi = v_2 \qquad \qquad \nu \in (0,1)$$

+
$$\frac{1}{1-C_3} \left[1 - \frac{C_2 H_{20}}{2} \right] \left[1 - E_3(\xi) \right]$$
 (3.1.24a)

+
$$\int_{0}^{1} \frac{C_{3}^{\nu}}{2(\nu+\xi)} B_{3}(\nu) H_{2}^{-1}(\nu) [1 - E_{3}(\nu) E_{3}(\xi)] d\nu +$$

+
$$\int_{0}^{1} B_{3}(\nu) \frac{(C_{3} - C_{2})\nu}{2(\nu - \xi)} H_{2}(\nu) [E_{3}(\nu) - E_{3}(\xi)] d\nu +$$

+
$$\frac{C_3 \nu_3}{2(\nu_3 + \xi)} = B_3(\nu_3) H_2^{-2}(\nu_3) [1 - E_3(\nu_3) E_3(\xi)] +$$

+
$$\frac{C_2 \nu_2}{2(\nu_2 + \xi)}$$
 H₃⁻¹(ν_2) { B₂(- ν_2) + B₂(ν_2) E₁(ξ) E₂(ξ) } .

+
$$\int_{0}^{1} \frac{C_2^{\nu}}{2(\nu+\xi)} H_3^{-1}(\nu) \{ B_2(-\nu) + B_2(\nu) E_1(\xi) E_2(\xi) \} \cdot$$

•
$$[1 - E_2(\nu) E_2(\xi)] d\nu +$$

• $[1 - E_2(\nu_2) E_2(\xi)] +$

+
$$\int_{0}^{1} \frac{(C_2 - C_3)}{2(\nu - \mu)} H_3(\nu) \{ B_2(\nu) + B_2(-\nu) E_1(\xi) E_2(\xi) \}$$

•
$$[E_2(\nu) - E_2(\xi)] d\nu -$$

$$-\frac{C_{3}\nu_{3}}{2(\nu_{3}+\xi)} B_{3}(\nu_{3}) H_{3}^{-1}(\nu_{3}) [E_{3}(\nu_{3}) - E_{1}(\xi) E_{2}(\xi) E_{2}(\xi)] -$$

$$- \int_{0}^{1} \frac{C_{3}^{\nu}}{2(\nu + \xi)} B_{3}^{(\nu)} H_{3}^{-1}^{(\nu)} [E_{3}^{(\nu)} - E_{1}^{(\nu)} E_{2}^{(\xi)} E_{2}^{(\xi)}] d\nu -$$

$$-\frac{1}{1-C_3} \left[1-\frac{C_3-H_{30}}{2}\right] \left[1-E_1(\xi)E_2(\xi)E_2(\xi)\right]$$

(3.1.25a)

$$\xi = \nu_3 \qquad \qquad \nu \in (0,1)$$

3.2 - Fator de Utilização Térmica e Fatores de Desvantagem Térmica

Os coeficientes de expansão dados pelas equações (3.1.22), (3.1.23), (3.1.24) e (3.1.25) formam um sistema acoplado de equações integrais regulares que pode ser submetido a um processo numérico-iterativo simples, conforme é apresentado no Apêndice C. Portanto, resultados de algumas grandezas físicas de interêsse ao problema da célula podem ser obtidos:

Fluxo Total

O fluxo total de nêutrons é definido como:

$$\mathbf{\hat{x}}(\chi) = \int_{-1}^{1} \psi(\chi,\mu') \, d\mu'$$
(3.2.1)

Para o combustível tem-se então:

$$\Psi_{1}(\chi) = B_{1}(\nu_{1}) \{ \exp[-\frac{(\alpha + \chi)}{\nu_{1}}] + \exp[-\frac{(\alpha - \chi)}{\nu_{1}}] \} +$$

+ $\int_{0}^{1} B_{1}(\nu) \{ \exp[-\frac{(\alpha + \chi)}{\nu}] + \exp[-\frac{(\alpha - \chi)}{\nu}] \} d\nu$ (3.2.2)

para o encamisamento,

e para o moderador:

$$\Psi_{3}(\chi) = B_{3}(\nu_{3}) \left\{ \exp\left[-\frac{(\chi - \beta)}{\nu_{3}}\right] d\nu + \exp\left[-\frac{(2\gamma - \beta - \chi)}{\nu_{3}}\right] \right\} + \int_{0}^{1} B(\nu) \left\{ \exp\left[-\frac{(\chi - \beta)}{\nu}\right] + \exp\left[-\frac{(2\gamma - \beta - \chi)}{\nu}\right] \right\} + \frac{2}{1 - C_{3}} (3.2.4)$$

Corrente

A corrente de nêutrons é definida como:

$$J(\chi) = \int \psi(\chi,\mu') \, \mu' d\mu'$$
 (3.2.5)

Para o combustível tem-se então que:

$$J_{1}(\chi) = (1 - C_{1}) \chi_{1} B_{1}(\nu_{1}) \{ \exp \left[- \frac{(\alpha + \chi)}{\nu_{1}} \right] - \exp \left[- \frac{(\alpha - \chi)}{\nu_{1}} \right] \} +$$

.

+ 1 - C₁
$$\int_{0}^{1} \nu B(\nu) + \exp\left[-\frac{(\alpha + \chi)}{\nu}\right] - \exp\left[-\frac{(\alpha - \chi)}{\nu}\right] d\nu'$$

(3.2.6)

para o encamisamento,

$$J_{2}(\chi) = (1 - C_{2}) \nu_{2} \{ B_{2}(\nu_{2}) \exp\left[-\frac{(\chi - \alpha)}{\nu_{2}}\right] - B_{2}(-\nu_{2}) \exp\left[-\frac{(\beta - \chi)}{\nu_{2}}\right] \} + (1 - C_{2}) \int_{0}^{1} \nu_{1} \{ B_{2}(\nu) \exp\left[-\frac{(\chi - \alpha)}{\nu_{2}}\right] - B_{2}(\nu) \exp\left[-\frac{(\beta - \nu)}{\nu_{2}}\right] \} d\nu$$

e para o mederador

$$J_{3}(\chi) = (1 - C_{3}) \nu_{3} B_{3}(\nu_{3}) + \exp\left[-\frac{(\chi - \beta)}{\nu}\right] - \exp\left[-\frac{(2\gamma - \beta - \chi)}{\nu_{3}}\right] +$$

+
$$(1 - C_3) \int \nu B_3(\nu) \{ \exp \left[- \frac{(\chi - \beta)}{\nu} \right] - \exp \left[- \frac{(2\gamma - \beta - \chi)}{\nu} \right] \} d\nu$$

(3.2.8)

(3.2.7)

Fator de Utilização Térmica e Fatores de Desvantagem Térmica

O fator de utilização térmica f é definido como o quociente entre o número de nêutrons térmicos que são absorvidos pelo combustível e o número total de nêutrons térmicos que são absorvidos na célula. Portanto,

$$f = \frac{\int_{0}^{\alpha} (1 - C_{1}) \psi_{1}(x) dx}{\int_{0}^{\alpha} (1 - C) \psi_{1}(x) dx + \int_{\alpha}^{\beta} (1 - C_{2}) \psi_{2}(x) dx + \int_{\beta}^{\gamma} (1 - C_{3}) \psi_{3}(x) dx}$$
(3.2.9)

ou numa forma mais conveniente,

$$f = \frac{(1 - C_1) \alpha_1}{(1 - C_1) \alpha_1 + (1 - C_2) \alpha_2 \frac{\phi_2}{\phi_1} + (1 - C_3) \alpha_3 \frac{\phi_3}{\phi_1}}$$
(3.2.10)

onde $\overline{\phi_1}$ $\overline{\phi_2}$ e $\overline{\phi_3}$ são, respectivamente, os planos médios no combustível, no encamisamento e no moderador, dados por:

$$\phi_1 = \frac{1}{\alpha_1} \int_{-\infty}^{\alpha} \phi_1(x) \, dx \qquad (3.2.11)$$

$$\phi_2 = \frac{1}{\alpha_2} \int_{\alpha}^{\beta} \phi_2(x) dx$$
 (3.2.12)

$$\phi_{3} = \frac{1}{\alpha_{3}} \int_{\beta}^{\gamma} \phi_{3}(x) dx$$
 (3.2.13)

Substituindo os resultados obtidos em (3.2.2), (3.2.3) e (3.2.4) nas equações acima tem-se então que:

$$\phi_{1} = \frac{1}{\alpha_{1}} \{ \nu_{1}B_{1}(\nu_{1}) [1 - E_{1}(\nu_{1})] + \int_{0}^{1} \nu B_{1}(\nu) [1 - E_{1}(\nu)] d\nu \}$$
(3.2.14)

$$\phi_{2} = \frac{1}{\nu_{2}} \nu_{2} \left[1 - E_{2}(\nu_{2}) \right] \left[B_{2}(\nu_{2}) + B_{2}(-\nu_{2}) \right] + \frac{1}{\alpha_{2}} \int_{0}^{1} \nu \left[1 - E_{2}(\nu) \right] \left[B_{2}(\nu) + B_{2}(-\nu) \right] d\nu \qquad (3.2.15)$$

$$\phi_{3} = \frac{1}{\alpha_{3}} \left\{ \nu_{3}B_{3}(\nu) \left[1 - E_{3}(\nu_{3}) \right] + \int_{0}^{1} \nu B_{3}(\nu) \left[1 - E_{3}(\nu) \right] d\nu \right\} + \frac{1}{\alpha_{3}} \left\{ \nu_{3}B_{3}(\nu) \left[1 - E_{3}(\nu_{3}) \right] + \int_{0}^{1} \nu B_{3}(\nu) \left[1 - E_{3}(\nu) \right] d\nu \right\}$$

+
$$\frac{2}{1-C_3}$$
 (3.2.16)

O fluxo de nêutrons térmicos sofre uma depressão no interior do combustível, devido a maior absorção de nêutrons térmicos pelo mesmo.

Consequentemente, segue que:

$$\phi_1 < \phi_2, \phi_3$$
 (3.2.17)

ou

$$\frac{\phi_2}{\phi_1}$$
 , $\frac{\phi_3}{\phi_1}$ > 1 (3.2.17a)

A grande importância física que estes resultados revelam é o fato do fator de utilização térmica de um sistema heterogêneo ser sempre menor que o fator de utilização térmica de uma mistura homogênea equivalente^{*}. Por esta razão, as quantidades definidas como:

$$\xi_1 = \frac{\phi_2}{\phi_1}$$
 (3.2.18)

$$\xi_2 = -\frac{\phi_3}{\phi_1}$$
(3.2.19)

são conhecidas, respectivamente, por fator de desvantagem térmica combustível-encamisamento e fator de desvantagem térmica combustível-moderador. Uma análise numérica do comportamento destes fatores é apresentada no Capítulo IV.

CAPÍTULO IV

RESULTADOS NUMÉRICOS E COMPARAÇÕES

Neste capítulo são apresentados e discutidos os resultados numéricos obtidos pelo método exato e pelo método P_N e, algumas comparações entre os dois métodos. O procedimento numérico-computacional empregado para a obtenção de resultados é descrito no Apêndice C.

4.1 - Resultados Numéricos Obtidos pelo Método Exato

O problema da célula proposto neste trabalho, fica completamente caracterizado, quando os parâmetros básicos C₁, C₂, C₃, α_1 , α_2 e α_3 são definidos. Para analisar a influência destes parâmetros sobre o comportamento da distribuição neutrônica na célula foram escolhidos 35 casos conforme Tabela IV.1 para serem resolvidos numericamente.

A definição dos parâmetros para cada caso, foi feita de modo que, dentro dos limites do modelo, o problema se aproximasse mais da realidade física. A influência de cada parâmetro foi analisada tomando-se como base o caso 1.

Para cada caso foram calculados, pela ordem, os autovalores discretos, a função H, as funções de normalização, os coeficientes da expansão discretos e contínuos, fluxo total, fluxo assimptótico, fluxo angular, corrente, os tatores de desvantagem térmica $\xi_1 \in \xi_2$ e o fator de utilização térmica. Os autovalores discretos, a função H e os coeficientes da expansão, foram obtidos numericamente através de processos iterativos que são descritos no Apéndice C.

$$f_{h} = \frac{(1-C_{1})\alpha_{1}}{(1-C_{1})\alpha_{1} + (1-C_{2})\alpha_{2} + (1-C_{3})\alpha_{3}}$$

^{*} O fator de utilização térmica para uma mistura homogênea equivalente é dado por:

Os termos integrais foram calculados pelo método de quadratura de Gauss⁽²⁴⁾, que expressa as integrais em somatórias da seguinte forma:

$$\int_{a}^{b} f(\mathbf{x}) d\mathbf{x} = \sum_{j=1}^{N} \omega_{j} f(\mathbf{x}_{j})$$
(4.1.1)

$$\omega_{i} = \frac{(b-a)}{2} W_{i} \qquad (4.1.1a)$$

$$x_i = \frac{1}{2} \{ (b-a) X_i + (b+a) \}$$
 (4.1.1b)

onde x_i são nós, ou, pontos de quadratura, W_i os pesos e N a ordem do conjunto de quadratura, os quais, podem ser encontrados em vários manuais de funções mateméticas⁽¹⁾.

Na Tabela IV.2 apresentam-se os resultados obtidos para os coeficientes discretos de diversos casos e nas Figuras 4.1 e 4.2 os coeficientes contínuos para os casos 2 e 35. Observa-se destas figuras que os coeficientes contínuos não apresentam um comportamento suave na região de $\nu \approx 1$; isto ocorre devido ao fato das funções $\lambda(\nu)$ e N(ν) divergirem a medida que $\nu \rightarrow 1$ (vide equações (2.3.16) e (2.5.8)), sendo assim, necessário um maior número de pontos de quadratura nesta região para se obter resultados mais precisos. Para o cálculo numérico de integrais no intervalo (0,1) foram utilizados 20 pontos de quadratura no intervalo (0;0,99) e 20 pontos no intervalo (0,99;1) e a precisão obtida foi de cinco algarismos significativos ou seis, conforme o caso.

Nas Tabelas IV.3 e IV.4 apresentam-se o fluxo angular calculado nas interfaces e nos pontos de simetria para os casos 2 e 34 respectivamente. As curvas correspondentes são apresentadas nas Figuras 4.3 e 4.4 podendo se observar a descontinuidade dos fluxos nas interfaces para $\mu = 0$, originadas pela descontinuidade física dos meios⁽³⁾.

Nas Tabeles IV.5 e IV.6 apresentam-se o fluxo total, o fluxo assimptótico e a corrente de nêutrons para os casos 1 e 32, respectivamente, e nas Figuras 4.5 e 4.6 as curvas correspondentes. O fluxo assimptótico, no qual não se considera a contribuição dos termos contínuos, diverge fortemente do fluxo total tanto no combustível quanto no encamisamento, regiões em que a teoria de transporte se faz importante, uma vez que estes meios apresentam maior absorção e menor espessura. No mode undor o fluxo assimptótico se aproxima do fluxo real devido a menor contribuição dos termos contínuos em meios espalhadores e de maior espessura.

Na Tabela IV.1 apresenta-se ainda os fatores de desvantagem térmica $\xi_1 \in \xi_2$ e o fator de utilização térmica f para todos os casos estudados. A influência de cada parâmetro sobre o comportamento destes fatores é apresentada a seguir:

- $C_1 = 0$ fator de utilização térmica aumenta a medida que a absorção no combustível aumenta, pronunciando assim a depressão do fluxo neutrônico nesta região. Consequentemente os fatores de desvantagem térmica $\xi_1 \in \xi_2$ também aumentam.
- $C_2 Os$ fatores ξ_1 , e ξ_2 sofrem pequena influência com o parâmetro C_2 desde que a espessura do encamisamento seja pequena. No entanto, o fator de utilização térmica é mais sensível a este parâmetro. Quanto menor for a absorção no encamisamento maior será f.

- C_3 De modo análogo ao parâmetro C_2 , o parâmetro C_3 exerce pouca influência sobre os fatores ξ_1 e ξ_2 e grande influência sobre o fator f. Um pequeno aumento da absorção no meio 3 implica num grande decréscimo do fator f.
- α_1 Exerce influências semelhantes aos do parâmetro C₁: os fatores ξ_1 , ξ_2 e f aumentam com o aumento de espessura do combustível.
- α₂ Os fatores ξ₁ e ξ₂ aumentam com a espessura do encamisamento, pois neste caso há um aumento do número de nêutrons do fluxo neutrônico no combustível. Consequentemente, o fator de utilização térmica f diminui.
- α_3 A medida que α_3 aumenta, o número de nêutrons que são absorvidos no moderador, embora seja pequeno, também aumenta. Logo o fator de utilização térmica, que mede a relação de nêutrons que são absorvidos no combustível, diminui. Por outro lado, o fluxo neutrônico no moderador aumenta com α_3 , consequentemente, o fator de desvantagem térmica ξ_2 também aumenta.

O fator de utilização térmica para uma mistura homogênea e equivalente dos materiais constituintes da célula, é dado por

$$f_{h} = \frac{(1-C_{1})\alpha_{1}}{(1-C_{1})\alpha_{1} + (1-C_{2})\alpha_{2} + (1-C_{3})\alpha_{3}}$$
(4.1.2)

Para as células em que os parâmetros C₁, C₂ e C₃ são fixos e as espessuras α_1 , α_2 e α_3 permanecem numa relação constante, como ocorre nos casos 1, 32, 33, 34, e 35, observa-se que o fator f_h permenece constante sempre, enquanto o fator de utilização térmica f será tanto menor quanto mais heterogêneo for o sistema. Na Figura 4.7 apresenta-se o gráfico do fluxo total, normalizado a unidade em x = γ , para estes casos, podendo se observar o aumento da depressão do fluxo de nêutrons no combustível para as células que apresentam maior espessura.

4.2 – Comparações com o Método P

A solução da equação de transporte (2.3.1) obtida pelo método P_N, <u>N</u> (mpar, é dada por (vide Apêndico B):

$$\psi_{N}(x,\mu) = \frac{1}{4\pi} \sum_{i=1}^{N+1} A_{i}(\nu_{i}) \Sigma(2m+1) G_{m}(\nu_{i}) \exp(-x/\nu_{i}) P_{m}(\mu)$$
(4.2.1)

onde $P_m(\mu)$ são os polinômios de Legendre $G_m(\nu_i)$ as autofunções associadas aos autovalores $\nu_i \in A_i(\nu_i)$ contantes a serem determinados pelas condições de contôrno do problema específico.

Os autovalores ν_i da expansão dada pela equação (4.2.1) aparecem aos pares, isto é, (N + 1)/2autovalores são positivos e outro igual número de autovalores com sinal oposto. Todos os ν_i caem no intervalo real (-1,1), exceto um par cujo valor absoluto é maior que a unidade^e para qualquer ordem N quando C > $\frac{2}{3}$, ou, para N de alta ordem se C < $\frac{2}{3}$. Para o caso particular de N = 1 e espalhamento isotrópico, o método P₁ é equivalente a equação dada pela Teoria da Difusão⁽³⁾.

Para C>1 tem-se um par de autovalores complexos cujo módulo é maior que a unidade. Os demais são reeis e caem no intervalo (-1, 1).

A equação (4.2.1) pode ser reescrita como

$$\psi_{N}(x,\mu) = \frac{1}{4\pi} \sum_{m=1}^{N} (2m+1) P_{m}(\mu) [A(\nu_{N}) G_{m}(\nu_{N}) \exp(-\frac{x}{\nu_{N}}) + A(-\nu_{N}) G_{m}(-\nu_{N}) \exp(-\frac{\nu}{m}) + \sum_{i=1}^{N=1} A(\nu_{i}) G_{m}(\nu_{i}) \exp(-\frac{x}{\nu_{i}})]$$
(4.2.2)

onde $\pm v_N$ são os dois maiores autovalores em valor absoluto.

Conforme foi demonstrado por Gallone e Ghilardotti⁽¹⁶⁾, há uma forte correlação entre a solução dada pela equação (4.2.2) obtida pelo método P_N e a solução dada pela equação (2.3.17) obtida pelo método de Case. Os termos associados aos autovalores $\pm v_N$ correspondem a parte assimptótica da solução geral (2.3.17) enquanto que os termos associados aos autovalores v_i correspondem a parte contínua. A medida que a ordem N da expansão aumenta, os autovalores $\pm v_N$ obtidos pelo método P_N mais se aproximam dos autovalores discretos $\pm v_o$ obtidos pelo método de Case, de tal forma que:

$$\lim_{N \to \infty} v_N = v_0 \tag{4.2.3}$$

Da mesma maneira, os autovalores v_i se aproximam do espectro contínuo de autovalores $v \in (-1,1)$ da solução de Case a medida que N aumenta, do modo que, o termo correspondente a integral sobre $v \in (-1,1)$ da solução exata (víde equação 2.3.17)), é aproximada, na solução P_N, por uma somatória sobre todos os termos associados aos autovalores v_i . Portanto, a precisão do método P_N aumenta com N.

Para efeitos de comparação, foram levantados resultados numéricos para expansões de ordem N = 1, 3, 5 e 7 para os mesmos casos apresentados na Tabela IV.1.

Na Tabela IV.7 apresenta-se inicialmente uma comparação entre os autovalores $\pm v_0$ obtidos pelo método exato e os autovalores $\pm v_0$ obtidos pelo método P_N. Observa-se que para uma dada ordem N, a precisão dos autovalores v_N aumenta a medida que o meio se torna mais espalhador isto é devido ao fato da contribuição dos termos de ordem mais alta diminuir quando o fator 1 - C \rightarrow 0.

Na Tabela IV.8 é feita uma comparação entre os coeficientes $B_1(\nu_1)$ obtidos pelo método exato e os coeficientes $B_1(\nu_N)$ obtidos pelo método P_N . Observa-se que os coeficientes $B_1(\nu_N)$ obtidos por uma ordem N, se aproximam rapidamente do valor exato quando os elementos constituintes se tornam mais espalhadores. Em caso contrário é necessário considerar expansão de alta ordem para se obter resultados satisfatórios, o mesmo ocorrendo para os demais coeficientes.

Uma comparação gráfica das distribuições angulares obtidas pelo método exato e P_N , com N = 1 e 3, nos pontos de simetria e de fronteira, são apresentadas nas Figuras 4.8a e 4.8b para o caso 2 e nas Figuras 4.9a e 4.9b para o caso 12. Observa-se que o método P_N não é bom para a descrição da distribuição angular dos nêutrons nas interfaces, visto que não é capaz de identificar a descontinuidade do fluxo angular em $\mu \approx 0$, devido ao fato deste método se constituir numa soma de funções contínuas. Em particular, o método P_1 , que descreve apenas um comportamento linear da distribuição angular de nêutrons, não é satisfatória no trato de problemas de células. Somente em meios espalhadores e distantes de fronteiras é que a aproximação P_1 pode traduzir bons resultados, no entanto, esta situação física geralmente não ocorre em problemas de células. De um modo geral, para o cálculo do fluxo angular de nêutrons pelo método P_N , com boa margem de precisão, é necessário considerar expansão de alta ordem, pelo menos N≥5, como pode ser visto numa comparação numérica apresentada nas Tabelas IV.9a, IV.9b, IV.9c e IV.9d correspondente ao caso 2.

Nas Tabelas IV.10, IV.11 e IV.12, apresentam-se os resultados do fiuxo total obtidos pelo método exato e P_N para os casos 12, 32 e 35, respectivamente, e nas Figuras 4.10, 4.11 e 4.12 os gráficos correspondentes. Verifica se novamente que a curva obtida pelo método P_1 está muito distante da curva exata. No entanto, o método P_3 já oferece bons resultados, desde que a célula em questão não envolva meios muito absorvedores ou espessuras muito pequenas como ocorre no caso 32.

Os fatores de desvantagem ξ_1 e ξ_2 e o fator de utilização térmica f, foram calculados pelo método P_N para todos os casos apresentados na Tabela IV.1 sendo que os desvios percentuais relativos aos resultados obtidos pelo método exato são apresentados na Tabela IV.13. Apresenta-se a seguir, uma descrição resultados, visto que, uma análise detalhada seria muito extensa e incompatível com o objetivo deste trabalho.

- $C_1 = E$ um dos parâmetros que exerce maior influência na precisão de $\xi_1 e \xi_2$. Quanto maior for a absorção do meio (1), que caracteriza o combust/vel, menor será a precisão destes fatores.
- $C_2 = Exerce$ grande influência na precisão do fator ξ_1 . A precisão aumenta a medida que o valor de C_2 se aproxima de C_1 .
- $C_3 = E$ o parâmetro que exerce maior influência na precisão do fator de utilização térmica. Quanto maior for absorção do meio (3), maior será a contribuição do termo $(1 - C_3)\alpha_3\xi_2$ no cômpto de f (vide equação (3.2.10)) consequentemente maior será a contribuição do desvio de ξ_2 .
- α_1 Exerce forte influência na precisão do fator f, pois a medida que a espessura do combustível aumenta, a contribuição dos termos que envolvem os fatores de desvantagem ξ_1 e ξ_2 no cômpto de f diminui, consequentemente a contribuição dos seus desvios também diminuem.
- α₂ Tem grande influência na precisão do fator de utilização térmica quando calculado pelo método P₁.
- α_3 Exerce forte influência na precisão do fator de desvantagem ξ_2 e principalmente do fator de utilização termica f pelas mesmas razões já citadas no item referente ao parâmetro C₃.

De um modo geral, como pode ser observado na Tabela IV.13, os resultados obtidos pelo método P_1 são muito imprecisos. Resultados mais satisfatórios são obtidos quando se aumenta a ordem da expansão, como exemplo, para N = 5, onde já é possível obter bons resultados com desvios relativos quase sempre bem menores que 1%.

4.3 - Comparações para o Caso Particular da Célula de Duas Regiões

Como já foi visto na secção 1.3 Ferziger e Robinson em 1965, aplicaram o método de Case ao problema da célula de duas regiões e calcularam o fator de desvantagem para 4 casos. Posteriormente, Siewert e Bond também aplicaram o método de Case para resolver o problema da célula de duas regiões, considerando espalhamento linearmente anisotrópico no moderador e apresentaram uma comparação de seus resultados com os publicados por Ferziger e Robinson, além de outros, para o caso particular de espalhamento isotrópico.

Devido ao interêsse de tais comparações e ao fato do problema da célula de três regiões ter permanecido sem solução exata até o presente, apresenta-se aqui também também uma comparação entre os resultados obtidos para o caso particular da célula de duas regiões ($\alpha_2 = 0$) e os resultados obtidos nos dois trabalhos acima citados.

Os parâmetros básicos que caracterizam os 4 casos resolvidos por estes trabalhos são os seguintes:

Célula 1	Célula 2	Célula 3	Célula 4
z ₁ = 0,10 cm	z ₁ = 0,20 cm	z ₁ = 0,30 cm	$z_1 = 0,40 \mathrm{cm}$
z ₂ = 0,35 cm	$z_2 = 0.70 \mathrm{cm}$	z ₂ = 1,05 cm	$z_2 = 1,40 \text{cm}$

onde z_1 e z_2 são as meia espessuras do combustível e do moderador respectivamente. As secções de choque, que permanecem constantes para as 4 células, são:

Combustível	Moderador
$\sigma_{a} = 0.32 \text{ cm}^{-1}$	$a_{\rm g} = 0.0195 {\rm cm}^{-1}$
$\sigma = 0,717 \mathrm{cm}^{-1}$	$\sigma = 2.33$ cm ⁻¹

onde

 $\sigma_{\rm a}$ = secção de choque macroscópica de absorção.

 σ = secção de choque macroscópica total.

As meias espessuras do combustível e moderador que devem ser consideradas nos cálculos deste trabalho são dadas em livres caminho médio, portanto tem-se que:

Célula 1	Célula 2	Célula 3	Célula 4
$\alpha_1 = 0,0717$	$\alpha_{1} = 0,1434$	$\alpha_1 = 0.2151$	$\alpha_1 = 0,2868$
$a_2 = 0.8155$	$\alpha_2 = 1,631$	$\alpha_2 = 2,4465$	$a_2 = 3,262$

e o número de nêutrons secundários emitido por colisão no combustível e moderador são, respectivamente,

 $C_1 = 0,55369596$

$$C_3 = 0,99163090$$

Mesmo considerando a espessura do encamisamento nula ($\alpha_2 = 2$), é necessário caracterizar um parâmetro C₂ fictício para se resolver o problema, visto que o sistema acoplado de equações integrais apresentadas no Capítulo III envolvem os coeficientes dos três meios. Foram definidos então diversos

Caso	° ₁	°2	с ₃	α ₁	α ₂	°°3	f	٤ ₁	₹ 2
1	0,60	0,80	0, 99	0,50	0,20	2,00	0,68077	1,2494	1,9989
2	0,30	0,80	0,99	0,50	0 20	2,00	0,75920	1,4464	2,6579
3	0,40	0,80	0,99	0,50	0,20	2,00	0,74253	1,3813	2,4387
4	0,50	0,80	0,99	0,50	0,20	2,00	0,72045	1,3156	2,2190
5	0,70	0,80	0,99	0,50	0,20	2,00	0,64416	1,1825	1,7782
6	0,80	0,80	0,99	0,50	0,20	2,00	0,56904	1,1194	1,5569
7	0,60	0,70	0,99	0,50	0,20	2,00	0,63391	1,2356	2,0682
8	0,60	0,85	0, 99	0,50	0,20	2,00	0,72212	1,2564	1,9636
9	0,60	0 ,90	0,99	0,50	0,20	2,00	0,75807	1,2634	1,9279
10	0,60	0,95	0, 99	0,50	0,20	2,00	0,79827	1,2706	1,8918
11	0,60	0,99	0, 99	0,50	0,20	2,0 0	0,83401	1,2764	1,8627
12	0,60	0,80	0,80	0,50	0,20	2,00	0,19601	1,2557	1,9254
13	0,60	0,80	0, 9 0	0,50	0,20	2,00	0,3115 3	1,2527	1,9595
14	C,60	0,80	0,95	0,50	0,20	2,00	0,44638	1,2509	1,9801
15	0,60	0,80	0,97	0,50	0,20	2,00	0,54148	1,2502	1,9892
16	0,60	0,80	0,98	0,50	0,20	2,00	0,60652	1,2498	1,9940
17	0,60	0,80	0,99	0,20	0,20	2,00	0,51936	1,0977	1,5064
18	0,60	0,80	0,99	0,30	0,20	2,00	0,60286	1,1429	1,6668
19	0,60	0,80	0, 99	0,40	0,20	2,00	0,65482	1,1934	1,8304
20	0,60	0,80	0 ,9 9	0,70	0,20	2,00	0,73 270	1,3777	2,3 520
21	0 ,60	0,80	0,99	1,00	0,20	2,00	0,76514	1,6080	2,9231
22	0,60	0,80	0,99	0 ,50	0,05	2,00	0,80768	1,1929	1,7846
23	0,60	0,80	0,99	0,50	0,10	2,00	0,76535	1,2116	1,8543
24	0,60	0,80	0,99	0,50	0,30	2,0 0	0,62437	1,2880	2,1521
25	0,60	0,80	0,99	0,50	0,40	2,00	0,56729	1,3280	2,3156
26	0,60	0 ,80	0, 9 9	0,50	0,50	2,00	0,51709	1,3697	2,4905
27	0,60	0,80	0,99	0,50	0,20	1,00	0,74523	1,2635	1,7834
28	0,60	0, 80	0,99	0,5 0	0,20	1,50	0,71818	1,2542	1,8875
2 9	0,60	0,80	0,99	0,50	0,20	2,50	0,6607 9	1,2465	2,1124
30	0,60	0,80	0, 99	0,50	0,20	3,00	0,63177	1,2445	2,2263
31	0,60	0,80	0,99	0, 50	0,20	4,00	0,57517	1,2422	2,4509
32	0,60	0,80	0,99	0,25	0,10	1,00	0,73745	1,0993	1,3611
33	0,60	0,80	0, 9 9	0,75	0,30	3,00	0,62908	1,4563	2,9836
34	0,60	0,80	0, 9 9	1,00	0,40	4,00	0,56153	1,7221	4,3643
35	0,60	0, 80	0,99	1,25	0,50	5,00	0,49321	2,045 9	6,1836

Casos Estudados e Resultados Obtidos para os Fatores f, ξ_1 e ξ_2

Coeficientes Discretos

Caso	$B_{1}(\nu_{1})$	B ₂ (v ₂)	$B_{2}(\nu_{2})$	B ₃ (<i>v</i> ₃)
1	7.3796	13,6830	2,9893	118,9983
2	0.8620	11,9139	0,5879	- 122,1214
-	14,5441	16,7647	7,1476	-113,5567
11	8,7420	40,7052	18,0328	- 116,6150
12	2.0819	3,8695	5,0558	-132,0629
17	10.2734	18,2064	9,2772	- 110,9333
22	8,4428	14,1727	3,3793	~ 118,0810
31	12,4853	23,0234	5,055 8	- 132,0629
37	5.9392	10,0026	4,7388	- 105,8858
35	9.6364	22,5904	0,7305	145,6679

Tabela IV.3

Fluxo Angular para o Caso 1

4	x = 0	x = α	$\mathbf{x} = \boldsymbol{\beta}$	$x = \gamma$
~0,95	9,0271 2	12,43663	13,73988	14,48036
~0,90	8,82685	12,33614	13,69569	14,61100
- 0,80	8,37911	12,09542	13,57972	14,89040
-0,70	7,86192	11,79142	13,42041	15,18929
-0,60	7,2693 3	11,41039	13,21024	15,49663
-0,50	6,59977	10,935 3 9	12,94264	15,79406
~0,40	5,86178	10,34262	12,61230	16,05722
-0,30	5,08927	9,59303	12,21380	16,26266
- 0,20	4,38151	8,61363	11,73763	16,40129
-0,10	3,95873	7,30945	11,16075	16,48068
-0,05	3,89906	6,65227	10,81438	16,50032
0,05	3,89906	4,54076	7,17830	16,50032
0,10	3,95873	4,41992	6,72527	16,48068
0,20	4,38151	4,30883	6,00624	16,40129
0,30	5,08927	4,40869	5,65073	16,26266
0,40	5,861 78	4,69227	5,57849	18,05722
0,50	6,59977	5,08651	5,69577	15,79406
0,60	7,26933	5,53085	5,92684	15,49663
0,70	7,86192	5,98577	6,20868	15,18929
0,80	8,37911	6, 42784	6,53655	14,89040
0,90	8,82685	6,84435	6,85868	14,61100
0,95	9,02712	7,04104	7,017 04	14,48036
l				

Fluxo Angular para o Caso 34

μ	x = 0	x = a	x = β	x = γ
-0,95	7,56173	15,65584	19,85788	29,11918
-0,90	7,19725	15,31271	19,61542	29,30212
-0,80	6,45736	14,57627	19,09526	29,64905
-0,70	5,71383	13,76227	18,52669	29,96410
-0,60	4,98550	12,87716	17,90778	30,24060
-0,50	4,30046	11,89476	17,22589	30,47426
-0,40	3,69913	10,80629	16,50716	30,66367
-0,30	3,23363	9,59989	15,71538	30,80955
-0,20	2,94960	8,29282	14,84946	30,91313
-0,10	2,83120	7,06599	13,88453	30,97507
-0,05	2,80776	6,63748	13,34338	30,99053
0,05	2,80776	4,46747	8,93598	30,99053
0,10	2,83120	4,28469	8,49893	30,97507
0,20	2,94960	4,00773	7,64930	30,91313
0,30	3,23363	3,82392	6,94899	30,80955
0,40	3,69913	3,73662	6,42348	30,66367
0,50	4,30046	3,75556	6,54860	30,47426
0,60	4,98550	3,87928	5,83790	30,24060
0,70	5,71383	4,09607	5,74342	29,96410
0,80	6,45736	4,38954	5,75610	29,64905
0,90	7,19725	4,74266	5, 85 713	29,30212
0,95	7,56173	4,93660	5,93526	29,11918

Tabela 1V.5

Fluxo Total, Fluxo Assimptótico e Corrente para o Caso 1

x	φ{x)	φ _{ass} (×)	J(x)
0,00	12,94962	9,37631	0,0
0,10	13,04260	9,41493	0,51922
0,20	13,32708	9,53111	1,04596
0,30	13,82214	9,72582	1,58819
0,40	14,57205	10,00064	- 2,15510
۵-	15,74678	10,35785	- 2,75911
α*	15,74670	14,84983	2,75910
0,60	17,19382	15,51950	3,08878
β-	18,92114	17,17315	3,44846
β+	18,921 11	21,31743	-3,44849
0,80	20,65788	22,31413	-3,26845
0,90	21,98213	23,257 95	3,08669
1,00	23,13388	24,14917	-2,91226
1,10	24,16429	24,98806	-2,73592
1,20	25,09727	25,77485	-2,56056
1,30	25,94644	26,50980	- 2,38609
1,40	26,72047	27,19312	- 2,21243
1,50	27,42525	27,82501	- 2,03950
1,60	28,06493	28,40575	-1,86725
1,70	28,64258	28,93523	- 1,6956 1
1,80	29,16050	29,41390	- 1,52452
1,90	29,62046	29,84180	1,35392
2,00	30,02381	30,31907	- 1,18374
2,10	30,37161	30,54580	- 1,01394
2,20	30,66470	30,82210	- 0,84446
2,30	30,90372	31,04805	0,67525
2,40	31,01916	31,23372	~ 0 ,50626
2,50	31,22136	31,34917	0,33742
2,60	31,30059	31,42442	- 0, 16868
γ	31,32699	31,44950	0,0

			· · · · · · · · · · · · · · · · · · ·
x	φ(x)	$\phi_{ass}(\mathbf{x})$	(x)L
0,00	14,38834	9,46775	0,0
0,05	14,42803	9,47750	0,28803
0,10	14,54943	9,50675	0,57766
0,15	14,76065	9,55558	0,87060
0,20	15,08100	9,62407	1,16881
α-	15,58955	9,71237	1,47498
α*	15,58957	14,05554	1,47498
0,30	16,20320	14,22705	1,63404
β-	16,92190	15,12315	1,79928
β*	16,92189	19,12543	1,79924
0,40	17,62488	19,38521	1,70789
0,45	18,13181	19,63154	1,61684
0,50	18,55853	19,86447	1,52601
0,55	18,93082	20,08398	1,43539
0,60	19,26109	20,29012	1,34494
0,65	19,55664	20,48288	- 1,25464
0,70	19,82219	20,66228	- 1,16449
0,75	20,06104	20,82835	- 1,07446
0,80	20 ,2755 7	20,98108	0,98455
0,85	20,46755	21,12050	- 0,89473
0,90	20,63837	21,24660	- 0,80501
0,95	20,78906	21,35941	0,71537
1,00	20,92047	21,45892	0,62579
1,05	21,03325	21,54515	· 0, 53628
1,10	21,12791	21,61811	0,44683
1,15	21,20486	21,67779	0,35741
1.20	21,26441	21,72420	0,26803
1,25	21,30679	21,75735	0,17867
1,30	21,33216	21,77724	0,08933
γ	21,34060	21,78387	0,0

Fluxo Total, Fluxo Assimptótico e Corrente para o Caso 32

T	abela	-1\	1.7
•			

Autovalores Discretos

С	Exato	P ₁	P ₃	P ₅	P ₇
0,30	1,002593	0,690066	0,925820	0,971737	0,987202
0,40	1,014586	0,745356	0,961722	0,997404	1,007733
0,50	1,044382	0,816497	1,011377	1,036622	1,042231
0,60	1,102132	0,912871	1,083849	1,099430	1,101690
0,70	1,206804	1,054093	1,198311	1,206149	1,206752
0,80	1,407634	1,290994	1,404738	1,407546	1,407632
0,90	1,903205	1,825742	1,902732	1,903202	1,903205
0,95	2,635149	2,581989	2,635069	2,635149	2,635149
0,99	5,796729	5,773503	5,796729	5,796729	5,796729

Tab	eła	١V	1.8

Caso	Exato	P ₁	P ₃	P ₅	P,	
1	7,3796	11,7171	8,5442	7,6801	7,4480	
2	0,8620	8,51 19	4,7406	3,1449	2,3650	
6	14,5441	16,7570	14,6337	14,5156	14,5250	
17	10,2734	16,6759	11,8271	10,6526	10,3503	
21	6,0785	9,6600	7,0784	6,3341	6,1369	
32	5,9392	9,7941	6,7795	6,1329	5,9709	
35	9,6364	14,8422	11,2073	10,0474	9,7336	

Coeficientes Discretos do Meio (1)

Tabela IV.9.a

Fluxo Angular para o Caso 2

0
11
×

	6,54631	6,29759	5,88661	5,41139	4,77999	4,00218	2,15106	2,33071	1,64959	1,19990	1,08247	1,08247	1,19990	1,64959	2,33071	2,15106	4,00218	4,77999	5,41139	5,88661	6,29759	6,54631
P	6,47770	6,42205	6,03675	5,39238	4,60308	3,76779	2,97021	2,27885	1,74697	1,41262	1,32725	1,32725	1,41262	1,74697	2,27885	2,97021	3,76779	4,60308	5,39238	6,03675	6,42205	6,47770
٩.	6,92805	6,43233	5,52129	4,71743	4,02076	3,43127	2,94896	2,57382	2,30587	2,14509	2,10490	2,10490	2,14509	2,30587	2,57282	2,94896	3,43127	4,02076	4,71743	5,52;29	6,43233	6,92805
٩.	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429	4,12429
Exato	6,58256	6,37366	5,90584	5,36439	4,74245	4,03711	3,25552	2,43104	1,66887	1,22265	1,17561	1,17561	1,38542	1,66887	2,43104	3,25552	4,03711	4,74245	5,36439	5,90584	6,37366	6,58256
1	-0,95	- 0,90	-0,80	-0,70	- 0,60	-0,50	-0,40	-0,30	-0,20	-0,10	- 0,05	0,05	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	06'0	0,95

Tabela IV.9.b

Fluxo Angular para o Caso 2

x = a

			······	······································	
مز	Exato	P ₁	P ₃	P 5	Р ₇
-0,95	10,25308	9,78863	9,42221	10,34886	10,31880
- 0,90	10,15585	9,50265	9,68627	9,87259	10,40587
-0,80	9,92192	9,03071	9,93357	9,48005	9,90423
-0,70	9,62596	8,55876	9,84865	9,42484	9,34702
-0,60	9,25526	8,08680	9,48213	9,36535	9,03481
- 0, 50	8,79439	7,61486	8,88464	9,09095	8,83338
~0,40	8,22252	7,14291	8,10681	8,50189	8.47589
-0,30	7,50549	6,67096	7,19925	7,58928	7,75091
-0,20	6,58043	6,19901	6,21260	6,41499	6,59603
-0,10	5,36388	5,72706	5,19748	5,09159	5,11662
-0,05	4,74126	5,49108	4,69506	4,41808	4,32590
0,05	1,52044	5,01914	3,73216	2,82577	2,82577
0,10	1,45347	4,78316	3,28433	2,58098	2,19119
0,20	1,41228	4,31121	2,48755	1,69193	1,31012
0,30	1,56330	3,83926	1,86480	1,20995	1,06308
0,40	1,89339	3,36732	1,46671	1,20022	1,43487
0,50	2,33058	2,89536	1,34391	1,65828	2,22135
0,6 0	2,81382	2,42342	1,54700	2,48990	3,07 523
0,70	3,30351	1,95147	2,12663	3,49108	3,63432
0,80	3,77641	1,47952	3,13342	4,32796	3,75265
0,90	4,22012	1,00757	4,61800	4,51674	3,85179
0,95	4,42912	0,77159	5,55522	4,17098	4,29975
1					

Tabela IV.9.c

Fluxo Angular para o Caso 2

 $\mathbf{x} = \boldsymbol{\beta}$

μ	Exato	P ₁	P3	P ₅	P ₇
- 0,95	11,48466	11,40489	10,38945	11,60988	11,56787
- 0 ,90	11,43986	11,13442	10,84386	11,0 8765	11,75093
-0,80	11,32185	10,59348	11,41883	10,75186	11,30312
-0,70	11,15945	10,05254	11,59401	10,89955	10,80130
-0,60	10,94505	9,51161	11,42417	11,11907	10,62503
-0 ,50	10,67203	8,97067	10, 964 07	11,14244	10,73260
-0,40	10,33514	8,42973	10,26848	10,62450	10, 7302 7
-0,30	9,92915	7,88879	9,38216	10,1 2220	10,36050
- 0,20	9,44501	7,34785	8,38988	9,07378	9,48420
-0,10	8,86107	6,80692	7,31638	7,77802	8,14387
-0,05	8,51320	6,53645	6,77005	7,07968	7,35747
0,05	5,30280	5,99551	5,69243	5,67937	5,72656
0,10	4,71473	5,72504	5,17483	5,01751	4,95941
0,20	3,76041	5,18410	4,21630	3,86595	3,69981
0,30	3,28026	4,64316	3,40562	3,05187	2,97032
0,40	3,14490	4,10223	2,79755	2,66503	2,82812
0,50	3,23151	3,56129	2,44685	2,73104	3,12707
0,60	3,44945	3,02035	2,40828	3,19062	3,64647
0,70	3,73780	2,47941	2,73662	3,87879	3,99858
0,80	4,45748	1,93848	3,48662	4,50412	4,03504
0,90	4,38430	1,39754	4,71304	4,62791	4,67217
0,95	4,54562	1,12707	5,52202	4,13927	4,43340

Tabela IV.9.d

Fluxo Angular para o Caso 2

 $x = \gamma$

μ	Exato	P ₁	P ₃	P ₅	P ₇
-0,95	12,23441	11,62190	11,89857	12,19187	12,31333
-0,90	12,36908	11,62190	12,12436	12,32005	12,34283
-0,80	12,65693	11,62190	12,53935	12,60857	12,36762
-0,70	12,96432	11,62190	12,80551	12,92012	12,95485
- 0,60	13,28041	11,62190	13,22285	13,23333	13,26983
-0,50	13,58574	11,62190	13,49137	13,52968	13,56334
-0,40	13,85560	11,62190	13,71106	13,79351	13,82069
-0,30	14,06603	11,62190	13,88194	14,01201	14,03096
-0,20	14,20800	11,62190	14,00399	14,17520	14,16631
-0,10	14,28940	11,62190	14,07722	14,27596	14,28152
-0,05	14,30954	11,62190	14,09553	14,30148	14,30555
0,05	14,30954	11,62190	14,09553	14,30148	14,30555
0,10	14,28940	11,62190	14,07722	14,27596	14,28152
0,20	14,20800	11,62190	14,00399	14,17520	14,16631
0,30	14,06603	11,62190	13,88194	14,01201	14,03096
0,40	13,85560	11,62190	13,71106	1 3 ,79351	13,82069
0,50	13,58574	11,62190	13,49137	13,52968	13,56334
0,60	13,28041	11,62190	13,22285	13,23333	13,26983
0,70	12,96432	11,62190	12,90551	12,92012	12,95485
0,80	12,65693	11,62190	12,53935	12,60857	12,36762
0,90	12,36908	11,62190	12,12436	12,32005	12,34283
0,95	12,23441	11,62190	11,89857	12,19187	12,31333

Fluxo	Total	para	0	Caso	12

×	Exato	Ρ,	P ₃	P ₅	Ρ,	
0,00	3,67569	4,10822	3,72936	3,66842	3,66375	
0,10	3,70250	4,20532	3,76040	3 ,6985 8	3,69237	
0,20	3,78457	4,28094	3,85464	3,79133	3,78049	
0,30	3,92756	4 ,407 99	4,01542	3,95212	3,93530	
0,40	4,14454	4,58800	4,24852	4,19142	4,17046	
α.	4,48494	4 ,8230 8	4,56243	4,52542	4,50905	
۵	4,48494	4,82308	4,56243	4,52542	4,50905	
0,60	4,90794	5 ,101 3 6	4,94006	4,93468	4,93016	
β⁻	5,43032	5,41027	5,36358	5,40063	5,41705	
β*	5,4 30 32	5,41027	5,3635 8	5,40063	5,41705	
0,80	5 ,940 50	5,72164	5,78239	5,85633	5,89069	
0, 90	6,29761	6,007 32	6,14552	6,233 36	6,26877	
1,00	6,59145	6,26905	6,46145	6,54961	6,57911	
1,10	6,84242	6,50837	6,73710	6,81816	6,83982	
1,20	7,060 58	6,72673	6,97818	7,04857	7,06285	
1,30	7,25204	6,92544	7,18939	7,24793	7,25618	
1,40	7,42089	7,10057	7,37460	7,42150	7,42528	
1,50	7,57011	7,26858	7,53700	7,57323	7,57394	
1,60	7,70193	7,41506	7,67924	7,70611	7,70491	
1,70	7,81809	7,54603	7,80349	7,82243	7,82017	
1,80	7,91998	7,66226	7,91 158	7,92395	7,92124	
1,90	8,00870	7,76446	8,00498	8,01203	8,00929	
2,00	8,08517	7,85325	8,08493	8,08775	8,08523	
2,10	8,15012	7,92914	8,15243	8,15196	8,14979	
2,20	8,20416	7,99260	8,20829	8,20531	8,20352	
2,30	8,24775	8,04402	8,23518	8,24834	8,24692	
2,40	8,28129	8,08369	8, 2 8759	8,28142	8,28032	
2,50	8,30505	8,11186	8,31190	8,30484	8,30399	
2,60	8,31923	8,12869	8,32 639	8,31882	8,31813	
γ	8,32394	8,13429	8,33120	8,32347	8,32282	

Fluxo Total para o Caso 32

x	Exato	P ₁	Р ₃	P ₄	P ₅
0,00	14,3883	14,8956	14,5679	14,4315	14,3784
0,05	14,4278	14,9180	14,6055	14,4753	14,4240
0,10	14,5494	14,9851	14,7185	14,8316	14,5625
0,15	14,7606	15,0971	14,9081	14,8316	14,7987
0, 20	15,0809	15,2546	15,1763	15, 1517	15,1408
α-	15,5896	15,4577	15,5257	15,5749	15,6011
α+	15,5896	15,4577	15,5257	15,5749	15,6011
0,30	16,2032	15,6956	15,9361	16,0741	16,1473
β-	16,9219	15,9570	16,3869	16,6223	16,7485
β +	16,9219	15,9570	16,3869	16,6223	16,7485
0,40	17,6249	16,2235	16,8419	17,1687	17,3419
0,45	18,1318	16,4761	17,2644	17,1611	17,8619
0, 50	18,5585	16,7150	16,6559	18, 1051	18,3211
0,55	18,9308	16,9402	18,0181	18,5058	18,5251
0,60	19,2611	17,1516	18,3524	18,8675	19,0847
0,65	19,5566	17,3493	18,6599	19,1937	19,4047
0,70	19,8222	17,5333	18,9420	19,4876	19,6899
0,75	20,0610	17,7036	19,1996	19,7516	19,9439
0,80	20,2756	17,8603	19,4336	19,9882	20,1700
0,85	20,4676	18,0032	19,6447	20, 1990	20,3705
0,90	20,6384	18,1326	19,8338	20,3857	20,5475
0,95	20,7891	18,2483	20,0014	20,5498	20,7026
1,00	20,9205	18,3504	20,1408	20,6922	20,8371
1,05	21,0332	18,4388	20,2743	20,8140	20,9518
1,10	21,1279	18,5136	20,3804	20,8157	21,0478
1,15	21,2049	18,5748	20,4669	20,9983	21,1255
1,20	21,2644	18,6224	20,5378	21,0619	21,1855
1,25	21,3068	18,6564	20,5814	21,1072	21,2281
1,30	21,3322	18,6768	20,5100	21,1342	21,3535
γ	21,3406	18,6836	20,6195	21,1432	21,2621

Fluxo Total para o Caso 35

x	Exato	P ₁	P ₃	P ₅	P ₇
0,00	7,55156	7,54827	7,41987	7,52520	7,54710
0,25	7,79419	7,83310	7,66987	7,76459	7,78737
0,50	8,54643	8,70910	8,45145	8,61062	8,53239
0,75	9,88938	10,24237	9,86752	9,85907	9,86937
1,00	11,99797	12,54863	12,11937	12,02016	11,99767
α·	15,41607	15,80194	15,56168	15,43659	15,40601
α+	15,41606	15,80194	15,56168	15,43659	15,40601
1,50	19,97726	19,92485	20,13934	20,04161	19,99790
β-	25,88663	24,79728	25,79351	25,87007	25,88584
β*	25,88669	24,79728	25,79351	25,87007	25,88584
2,00	32,23089	29,94027	31,76820	32,04598	32,14600
2,25	37,39322	34,76435	37,05546	37,31807	37,37742
2,50	42,03796	39,27857	41,81133	42,00916	42,03366
2,75	46,28813	43,39139	46,13377	46,27174	46,28061
3,00	50,19739	47,41070	50,08516	50,18075	50,18579
3,25	53,79551	51,04387	53,70595	53,77541	53,78158
3,50	57,10153	54,39770	57,02307	57,07815	57,08671
3,75	60,12881	57,47848	60,05500	60, 103 18	60,11391
4,00	62,68741	60,29199	62,81489	63,86052	62,87377
4,25	65,38524	62,84351	65,31242	65,35784	65,37098
4,50	67,62878	65,13782	67,55505	67,60132	67,61490
4,75	69,62340	67,17923	69,54864	69,59614	69,60984
5,00	71,37362	68,97156	71,29793	71,34668	71,86033
5,25	72,88325	70,51817	72,80681	72,85666	72, 87016
5,50	74,15546	71,82196	74,07847	74,12920	74,14254
5,75	75,19288	7 2,88 53 8	74,11552	55,16692	75,18009
6,00	75,99763	73,71043	75,92001	75,97189	75,98492
6,25	76,57130	74,29864	76,49353	76,54573	76,55866
6,50	76,91505	74,65113	76,83721	76,88959	76,90245
γ	77,02956	74,76855	76,95169	77,00413	77,01697

Desvios Relativos dos Fatores f, ξ_1 e ξ_2 Calculados pelo Método P_N

		Ę				Ę	2			f		
Caso	P	P ₃	P ₅	P ₇	P ₁	P3	P ₅	P ₇	P ₁	P3	P ₅	P ₇
1	6,95	1,35	0,11	0,13	13,91	2,05	0,47	0,15	3,22	0,52	0,08	0,00
2,	11,57	3,06	0,94	0,37	17,60	2,79	0,74	0,30	3,61	0,71	0 ,20	0,08
3	10,19	2,55	0,69	0,21	16 ,60	2,50	0, 67	0,25	3,52	0,67	0,17	0,06
4	8,66	1,98	0,41	0,05	15,39	2,35	0,58	0,21	3,39	0,60	0,14	0,03
5	5,01	0,64	0,22	0,32	12,05	1,69	0,35	0,09	2,94	0,39	0,01	0,05
6	2,79	0,16	0,58	0,52	9,64	1,22	0,1 9	0,02	2,48	0,17	0,11	0,13
7	5,7 3	0,33	0,59	0,61	14,22	1,90	0,34	0,06	3,32	0,36	0,0 9	0,13
8	7,55	1,86	0,47	0,11	13,72	2,11	C, 53	0,19	3,06	0,56	0,14	0,04
9	8,16	2,37	0,82	0,36	13,49	2,15	0, 57	0,22	2,83	n.54	0,1 6	0,07
10	8,77	2,88	1,18	0,60	13,24	2,16	0,60	0,24	2,51	0,48	0,15	0,07
11	9,25	3,29	1,46	0,80	13,02	2,16	0,61	0,26	2,17	0,37	0,11	0,05
12	7,41	1,47	0,06	0,22	13,76	2,52	0,65	0,22	12 ,05	2,01	0,50	0,16
13	7,19	1,41	0,08	0,18	13,79	2,29	0,5 6	0,19	9,86	1,53	0,35	0,10
14	7,06	1,38	0,10	0,15	13,84	2,16	0,51	0,17	7,42	1,12	0,24	0,06
15	7,01	1,36	0,11	0,14	13,87	2,11	0,49	0,16	5,74	0,87	0,17	0,03
16	6,98	1,36	0,11	0,13	13,89	2,08	0,48	0,16	4,62	0,71	0,13	0,02
17	4,89	2,29	1,08	0,50	12,51	3,50	1,32	0,57	3,99	1,36	0,57	0,26
18	5,85	2,10	0,72	0,21	13,37	2,96	0,91	0,33	3,72	0,99	0,32	0,10
19	6,52	1,75	0,38	0,00	13,77	2,47	0, 64	0,21	3,45	0,7 2	0,17	0,03
20	7,26	0, 60	0,23	0,26	13 ,75	1,49	0,32	0,11	2,82	0,27	0,01	0,02
21	6,90	0,15	0,45	0,34	13,07	1,08	0,25	0,10	2,37	0,10	0,03	0,03
22	6,67	2,00	0,60	0,16	13,27	2,47	0,7 6	0,34	2,29	0,45	0,14	0,06
23	6,80	1,78	0,41	0,03	13,55	2,35	0,6 6	0,27	2,62	0,50	0,13	0,04
24	6,9 6	0,95	0,08	0,19	14,09	1,74	0,32	0,09	3,70	0,46	0,02	0,03
25	6,88	0,60	0,20	0,20	14,14	1,45	0,21	0,05	4,09	0,37	0,03	0,05
26	6,72	0,30	0,26	0,18	14,10	1,18	0,14	0,05	4,38	0,26	0,07	0,06
27	7,99	1,36	0,0 9	0,30	17,14	3,52	0,7 8	0,25	2,72	0,49	0,04	0,04
28	7,31	1,34	0,05	0,19	15,24	2,51	0,56	0,19	2,95	0,50	0,07	0,01
29	6,73	1,35	0,15	0,09	12,88	1 ,8 0	0,42	0,13	3,47	0,54	0,10	0,01
30	6,59	1,35	0,17	0,07	12,04	1,62	0,3 8	0,12	3,71	0,5 <u>6</u>	0,11	0,01
31	6,41	1,36	0,20	0,04	10,74	1,41	0,33	0,10	4,11	0,59	0,12	0,02
32	5,34	2,59	1,22	0,55	13,41	4,88	1,87	0,83	2,26	0,92	0,39	0,17
33	6,47	0, 16	0,31	0,23	11,32	0,82	0,13	0,04	3,42	0,18	0,03	0,04
34	5,04	0,51	0,40	0,21	8,72	0,31	0, 02	0,01	3,21	0,02	0,07	0,04
35	3,34	0,82	0, 39	0,18	6,66	0,07	0,02	0,00	2,78	0,15	0,08	0,04

Figura 4.1 Coeficientes continuos - caso 2

-. t

Figura 4.2 - Coeficientes continuos - caso 35

Figura 4.3 - Fluxo angular - caso 1

.

Figura 4.5 - Fluxo total, assimptótico e corrente - caso 1

Figura 4.7 - Fluxo total para os casos 1, 32, 33, 34 e 35

Figura 4.8.a — Fluxo angular calculado pelo método exato, P $_1$ e P_3 — caso 2

 \mathbb{C}

Figure 4.8.6 — Fluxo angular calculado pelo método exato, P₁ e P₃ — caso 2

Figura 4.9.a – Fluxo angular calculado pelo método exato, $P_1 e P_3 - caso 12$

69

Figura 4.9.6 — Fluxo angular calculado pelo método exato, $P_1 = P_3 = caso 12$

Figure 4.10 - Fluxo total calculado pelo método exato, $P_1 = P_3 - caso 12$

71

Figura 4.11 - Fluxo total calculado pelo método exato, P₁ e P₃ - caso 32

Figura 4.12 – Fluxo total calculado pelo método exato, $P_1 = P_3 - caso 35$

valores de C2 para cada caso e nenhuma alteração foi verificada na precisão dos resultados obtidos.

O fator de desvantagem ξ definido para a célula de duas regiões corresponde ao mesmo fator ξ_2 , definido no capítulo, III quando $\alpha_2 = 0$.

Os resultados obtidos para cada caso apresentaram um mínimo de 6 algarismos significativos conforme se vê na Tabela IV.14 onde ainda se apresentam os resultados obtidos pelo método P₁ e os publicados por Ferziger e Robinson e Siewert e Bond. Observa-se que estes últimos resultados, apresentados por Siewert e Bond praticamente coincidem com os que foram aqui obtidos, enquanto que os resultados de Ferziger e Robinson se afastam um pouco devido a, possivelmente, baixa ordem de quadratura e ao tratamento numérico por eles empregado.

Tabela IV.14

Fatores de Desvantagem para o Caso Particular da Cálula de Duas Regiões

Céluia	P ₁	Ferziger e Robinson	Siewert e Bond	Solução convergida
2	1,113	1,227	1,2317	1,23174
3	1,253	1,401	1,4077	1,40766
4	1,447	1,623	1,6284	1,62843

CAPÍTULO V

CONCLUSÕES, COMENTÁRIOS E SUGESTÕES

Solução analítica exata e resultados numéricos para o problema da célula de três regiões no modelo de um grupo de energia e geometria plana foram obtidos pela primeira vez, através do método de expansão em autofunções singulares e das relações de ortogonalidade das autofunções de meio-intervalo.

Para a remoção das singularidades envolvidas nas equações integrais dos coeficientes de expansão, foi aplicado com sucesso a técnica de regularização proposta na referência⁽¹⁹⁾. Como resultatio, obteve-se um sistema acoplado de equações integrais regulares para os coeficientes de expansão que pôde ser resolvido por processos iterativos simples de convergência relativamente rápida. Portanto, mostrou-se aqui neste trabalho a viabilidade desta técnica na aplicação em problemas de multiregiões insolúveis até então, embora envolva um tratamento analítico muito extenso e trabalhoso nesta classe de problemas.

Resultados numéricos foram levantados para diversos casos e uma análise da influência dos parâmetros básicos na distribuição neutrônica da célula é apresentada em detalhes no capítulo IV. A precisão destes resultados é maior para as células que apresentam maiores espessuras e meios mais espalhadores em virtude dos coeficientes contínuos serem funções mais suaves nestes casos.

Para efeitos de comparação, resultados numéricos pelo método P_N também foram levantados e discutidos. De um modo geral, verificou-se que o método P_1 se constitui num método muito pobre realmente proibitivo em cálculos de células. O método P_3 , por sua vez, oferece resultados relativamente bons desde que as células em questão não apresentem espessuras muito pequenas ou meios muito absorvedores. Observou-se que, com boa segurança, o método P_5 e os de ordens superiores já podem oferecer resultados bem satisfatórios, com desvios menores que 1%.

O trabalho computacional exigido pelo método exato é bem mais extenso que o exigido pelo método P_N , devido a maior complexidade das equações e ao grande número de funções e variáveis envolvidas. O tempo de processamento (C.P.U.) necessário para executar cada caso, que em média está entre 3 e 4 minutos, é muito alto quando comparado com o tempo necessário para executar o mesmo caso pelo método P_N . Os quatro métodos estudados, P_1 , P_3 , F_5 e P_7 gastaram juntos menos de um minuto de C.P.U.

Portanto, em virtude destes fatores e mais as l'imitações e complexidade do tratamento analítico, impedem a aplicação prática do método exato. Fundamentalmente, sua função é servir como teste de métodos aproximados, que são de interêsse em aplicações práticas.

Para trabalho futuro, sugere-se um estudo em que se considera espalhamento linearmente anisotrópico no moderador, visto que estes meios apresentam, geralmente, alto grau de anisotropia. É de interêsse também uma análise mais detalhada de influência dos parâmetros básicos $C_1, C_2, \ldots, \alpha_3$ no cálculo dos fatores de desvantagem térmica e fator de utilização térmica.

Sugere-se também uma comparação com outros métodos aproximados tais como DP_N, S_N, etc. ., bem como uma análise mais detalhada dos fatores que influenciam a precisão dos resultados obtidos pelos métodos aproximados.

APÉNDICE A

TABELA DE INTEGRAIS

Apresenta-se aqui os resultados das integrais envolvidas na determinação dos coeficiantes de expansão.

Integrais que Envolvem Autofunções do Mesmo Meio

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{i},\mu) [B_{i}(\nu_{i}) \phi_{i}(\nu_{i},\mu)] d\mu = B_{i}(\nu_{i}) N_{i}(\nu_{i}) H_{i}(\nu_{i})$$
(A.1)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi(\nu_{i},\mu) [B_{i}(\nu_{i}) \phi_{i}(-\nu_{i},\mu)] d\mu = B_{i}(\nu_{i}) - \frac{C_{i}\nu_{i}\nu_{i}}{2(\nu_{i}+\nu_{i})} H_{i}^{-1}(\nu_{i})$$
(A.2)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{i},\mu) \left[\int_{0}^{1} B_{i}(\nu) \phi_{i}(\nu,\mu) d\nu \right]^{0} d\mu = 0$$
(A.3)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) \left[\int_{0}^{1} B_{i}(\nu') \phi_{i}(\nu',\mu) d\nu' \right] d\mu = B_{i}(\nu) N_{i}(\nu) H_{0}(\nu)$$
(A.4)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) \left[\int_{0}^{1} B_{i}(\nu') \phi_{i}(-\nu',\mu) d\nu' \right] d\mu = \int_{0}^{1} B_{i}(\nu') \frac{C_{1}\nu\nu'}{2(\nu+\nu')} H_{i}^{-1}(\nu') d\nu' \quad (A.5)$$

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{i},\mu) \left[\int_{0}^{1} B_{i}(\nu) \phi_{i}(-\nu,\mu) d\nu \right] d\mu = \int_{0}^{1} B_{i}(\nu) \frac{C_{i}\nu_{i}\nu}{2(\nu_{i}+\nu)} H_{1}^{-1}(\nu) d\nu$$
(A.6)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) \left[B_{i}(\nu_{i}) \phi(-\nu_{i},\mu) \right] d\mu = B_{i}(\nu_{i}) \frac{C_{i}\nu_{i}\nu_{i}}{2(\nu_{i}+\nu)} H_{i}^{-1}(\nu_{i})$$
(A.7)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) [B_{i}(\nu_{i}) \phi_{i}(\nu_{i},\mu)] d\mu = 0$$
(A.8)

Integrais que Envolvem Autofunções de Meios Distintos

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{i},\mu) [B_{j}(\nu_{j}) \phi_{j}(\nu_{j},\mu)] d\mu = B_{j}(\nu_{j}) \frac{C_{j}\nu_{j}\nu_{i}}{2(\nu_{j} - \nu_{i})} H_{i}^{-1}(-\nu_{j})$$
(A.9)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{i},\mu) \left[B_{i}(\nu_{j}) \phi_{i}(\nu_{j},\mu) \right] d\mu = B_{i}(\nu_{i}) \frac{C_{i}\nu_{i}\nu_{i}}{2(\nu_{i}+\nu_{i})} H_{i}^{-1}(\nu_{j})$$
(A.10)

(*) Esta integral contám o termo singular cuja remoção foi tratada no capítulo II.

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) \frac{S}{1-C_{j}} d\mu = \frac{S}{1-C_{j}} \nu \left[1-\frac{C_{i}}{2}H_{i0}\right]$$
(A.18)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{\mu}\mu) \frac{S}{1-C_{j}} d\mu = \frac{S}{1-C_{j}} \nu_{i} \left[1-\frac{C_{i}}{2} H_{i0}\right]$$
(A.17)

Integrais que Envolvem o Termo de Fonte

8

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) \left[\int_{0}^{1} B_{j}(\nu) \phi_{j}(-\nu',\mu) d\nu' \right] d\mu = \int_{0}^{1} B_{j}(\nu') \frac{C_{j}\nu\nu'}{2(\nu+\nu')} H_{i}^{-1}(\nu') d\nu' \quad (A.15)$$

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) \left[\int_{0}^{1} B_{j}(\nu') \phi_{j}(\nu',\mu) d\nu' \right] d\mu =$$

$$= \int_{0}^{1} B_{j}(\nu') \left[C_{j} - C_{i} \right] \frac{P}{2(\nu'-\nu)} \nu\nu' H_{i}(\nu') d\nu' + \nu B_{j}(\nu) H_{i}(\nu) \lambda_{i}(\nu) \lambda_{j}(\nu) +$$

$$+ \frac{\pi^{2}}{4} C_{i}C_{j}\nu^{3}B_{j}(\nu) H_{i}(\nu) \quad (\bullet) \quad (A.16)$$

$$\int_{0}^{2} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) \left[B_{j}(\nu_{j}) \phi_{j}(-\nu_{j},\mu) \right] d\mu = B_{j}(\nu_{j}) \frac{C_{j}\nu_{j}\nu}{2(\nu_{j}+\nu)} H_{i}^{-1}(\nu_{j})$$
(A.14)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu,\mu) [B_{j}(\nu_{j}) \phi_{j}(\nu_{j},\mu)] d\mu = B_{j}(\nu_{j}) \frac{C_{j}\nu_{j}\nu}{2(\nu_{j}-\nu)} H_{j}^{-1}(-\nu_{j})$$
(A.13)

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{i},\mu) \left[\int_{0}^{1} B_{j}(\nu) \phi_{j}(-\nu_{j},\mu) d\nu \right] d\mu = \int_{0}^{1} B_{j}(\nu) \frac{C_{j}\nu_{i}\nu}{2(\nu_{i}+\nu)} H_{i}^{-1}(\nu) d\nu \qquad (A.12)$$

$$\int_{0}^{1} \mu H_{i}(\mu) \phi_{i}(\nu_{i},\mu) \left[\int_{0}^{1} B_{j}(\nu) \phi_{j}(\nu,\mu) d\nu \right] d\mu = \int_{0}^{1} B_{j}(\nu) \frac{[C_{j} - C_{i}]}{2(\nu - \nu_{j})} \nu \nu_{i} H_{i}(\nu) d\nu \qquad (A.11)$$

onde ${\rm H}^{}_{i\,\alpha}$ são os momentos de função ${\rm H}^{}_{i}$ dados por

$$H_{i\alpha} = \int_{0}^{1} H_{i}(\mu) \mu^{\alpha} d\mu$$
 $\alpha = 0, 1, 2, ...$ (A.19)

APÉNDICE B

APLICAÇÃO DO MÉTODO P_N AO PROBLEMA DA CÉLULA DE TRÊS REGIÕES

Apresenta-se neste Apêndice a aplicação do método P_N para o problema da Célula de três regiões. O procedimento numérico computacional é apresentado no Apêndice C.

B.1 - O Método de Harmônicos Esféricos em Geometria Plana

A equação de transporte homogênea para o modelo de um grupo de energia, geometria plana e espalhamento isotrópico é dada por

$$\mu \frac{\partial}{\partial x} \psi(x,\mu) + \psi(x,\mu) = \frac{C}{2} \int_{-1}^{1} \psi(x,\mu') d\mu' \qquad (B.1.1)$$

Expandindo o fluxo angular $\psi(x,\mu)$ em harmônicos esféricos em μ , tem-se que:

$$\psi(x,\mu) = \frac{1}{4\pi} \sum_{m=0}^{\infty} (2m+1) \phi_m(x) P_m(\mu)$$
(B.1.2)

onde $P_m(\mu)$ são os polinômios de Legendre e $\phi_m(x)$, funções^(*) dadas por:

$$\phi_{m}(x) = 2\pi \int_{-1}^{1} \psi(x,\mu') P_{m}(\mu') d\mu'$$
(B.1.3)

As duas primeiras funções têm significado físico simples. Assim, para m = 0,

$$P_{0}(\mu) = 1$$
 (B.1.4)

e

$$\phi_{0}(x) = 2\pi \int_{-1}^{1} \psi(x,\mu') d\mu' \qquad (B.1.5)$$

que representa o fluxo total de néutrons e para m = 1,

$$P_1(\mu) = \mu$$
 (B.1.6)

^(*) $\phi_{m}(x)$ também são referidos como momentos harmônicos esféricos de ordem m $^{(12,35)}$.

$$\phi_1(x) = 2\pi \int_{-1}^{1} \psi(x,\mu') \, \mu' \, d\mu' \qquad (B.1.7)$$

que representa a corrente total de néutrons.

Substituindo a Eq. (B.1.2) na Eq. (B.1.1) e utilizando a propriedade de ortogonalidade

$$\int P_{n}(\mu) P_{m}(\mu) d\mu = \frac{2}{2m+1} \delta mn$$
(B.1.8)

com

$$\delta mn = delta de Kronecker$$

tem-se que:

$$\sum_{m=0}^{\infty} (2m+1) \left[\mu \phi'_{m}(x) + \phi_{m}(x) \right] P_{m}(\mu) = C \phi_{0}(x)$$
(B.1.9)

Multiplicando a Eq. (B.1.9) por $P_n(\mu)$, integrando-a sobre μ , $\mu \in (-1,1)$, e utilizando a fórmula de recorrência

$$\mu P_{m}(\mu) = \frac{1}{(2m+1)} \{ (m+1) P_{m+1}(\mu) + m P_{m-1}(\mu) \}$$
(B.1.10)

obtém-se o seguinte:

$$(n + 1) \phi'_{n+1}(x) + (2n + 1) \phi_n(x) + n \phi'_{n-1}(x) = C \phi_0(x) no$$

 $n = 0, 1, 2, ...$ (B.1.11)

Para fins de aplicações práticas, assume-se que os termos de ordem superiores a N pouco contribuem na solução (B.1.2) e trunca-se a expansão no termo desta ordem, o que resulta num sistema finito de N + 1 equações dadas por (B.1.11) com N + 1 funções desconhecidas, $\phi(x), \ldots, \phi_N(x)$.

Para resolver este sistema de equações, considera-se a seguinte solução:

$$\phi_n(x) = G_n(\nu) e^{-x/\nu}$$
 $n = 0, 1, 2, ...$ (B.1.12)

Substituindo (B.1.12) em (B.1.11), obtém-se um sistema de N + 1 equações.

e

$$\left[(n+1) G_{n+1}(\nu) + nG_{n-1}(\nu) \right] + \nu \left[(2n+1) - C\delta_{n0} \right] G_{n}(\nu) = 0$$

$$n = 0, 1, 2, \dots$$
(B.1.13)

que fornece os autovalores ν e as autofunções $G_n(\nu)$.

Na forma matricial, as equações dadas por (B.1.13) podem ser escritas como:

$$\sum_{\nu=1}^{n} (\nu) \times G(\nu) = 0$$
(B.1.14)

onde $D(\nu)$ é a matriz do sistema $G(\nu)$ o vetor correspondente as autofunções $G_n(\nu)$.

Os autovalores são os zeros de

$$D(\nu) = \det \left(\begin{array}{c} D(\nu) \\ 0 \end{array} \right)$$
(B.1.15)

onde D(v) é um polinômia de ordem N + 1 em v.

Se N é (mpar, D(ν) será um polinômio de ordem (N + 1)/2 em ν^2 , com autovalores $\pm \nu_1$. $\pm \nu_2 \dots \pm \frac{\nu_{(N+1)}}{2}$.

Se N é par, D $\{\nu\}$ apresentará uma raiz nula que nada contribui para a solução. Considera-se, assim, expansões truncadas em termos de ordem ímpar.

Para cada autovalor ν_i , tem-se em correspondência um conjunto de autofunções $G_0(\nu_i)$, $G_1(\nu_i), \ldots, G_N(\nu_i)$, onde uma destas autofunções deve ser normalizada (geralmente $G(\nu_i) = 1$ para todos i).

Portanto, para cada autovalor implica a solução:

$$\psi_i(x,\mu) = \frac{1}{4\pi} \sum_{m=0}^{N} (2m+1) G_m(\nu_i) e^{-x/\nu_i} P_m(\mu)$$
 (B.1.16)

A solução geral será dada então por:

$$\Psi(\mathbf{x},\mu) = \sum_{i=1}^{N+1} A_i \Psi_i(\mathbf{x},\mu)$$
(B.1.17)

onde A_i são os coeficientes de expansão a serem determinados por meio de condições de contôrno do problema específico.

B.2 - O Problema da Célula de Três Regiões

A solução geral para o problema da célula de três regiões, como está definido na secção 3.1, é escrita da seguinte forma:

$$\begin{split} \psi_{1}(\mathbf{x},\mu) &= \frac{1}{4\pi} \sum_{i=1}^{N'} B_{1}(\nu_{1i}) \sum_{\mathbf{m}=0}^{\infty} G_{1m}(\nu_{1i}) \exp\left[-\frac{(\alpha_{1}+\mathbf{x})}{\nu_{1i}}\right] (2m+1) P_{\mathbf{m}}(\mu) + \\ &+ \frac{1}{4\pi} \sum_{i=1}^{N} B_{1}(-\nu_{1i}) \sum_{\mathbf{m}=0}^{N} G_{1m}(-\nu_{1i}) \exp\left[-\frac{(\alpha_{1}-\mathbf{x})}{\nu_{1i}}\right] (2m+1) P_{\mathbf{m}}(\mu) \quad (B.2.1) \\ \psi_{2}(\mathbf{x},\mu) &= \frac{1}{4\pi} \sum_{i=1}^{N'} B_{2}(\nu_{2i}) \sum_{\mathbf{m}=0}^{N} G_{2m}(\nu_{2i}) \exp\left[-\frac{(\mathbf{x}-\alpha_{1})}{\nu_{2i}}\right] (2m+1) P_{\mathbf{m}}(\mu) + \\ &+ \frac{1}{4\pi} \sum_{i=1}^{N'} B_{2}(-\nu_{2i}) \sum_{\mathbf{m}=0}^{N} G_{2m}(-\nu_{2i}) \exp\left[-\frac{(\beta-\mathbf{x})}{\nu_{2i}}\right] (2m+1) P_{\mathbf{m}}(\mu) \quad (B.2.2) \\ \psi_{3}(\mathbf{x},\mu) &= \frac{1}{4\pi} \sum_{i=1}^{N'} B_{3}(\nu_{3i}) \sum_{\mathbf{m}=0}^{N} G_{3m}(\nu_{3i}) \exp\left[-\frac{(\mathbf{x}-\beta)}{\nu_{3i}}\right] (2m+1) P_{\mathbf{m}}(\mu) + \\ &+ \frac{1}{4\pi} \sum_{i=1}^{N'} B_{3}(-\nu_{3i}) \exp\left[-\frac{(2\gamma-\beta-\mathbf{x})}{\nu_{3i}}\right] (2m+1) P_{\mathbf{m}}(\mu) + \\ &+ \frac{1}{4\pi} \sum_{i=1}^{N'} B_{3}(-\nu_{3i}) \exp\left[-\frac{(2\gamma-\beta-\mathbf{x})}{\nu_{3i}}\right] (2m+1) P_{\mathbf{m}}(\mu) + \\ &+ \psi_{\mathbf{p}}(\mathbf{x},\mu) \end{split}$$

onde: $\psi_j(x,\mu) \in B_j(\pm \nu_{ji})$, j = 1,2,3, são, respectivamente, os fluxos angulares e os coeficientes de expansão para os meios (1), (2) e (3) e ainda,

$$N' = \frac{(N+1)}{2}$$

$$\psi_{3p}(x,\mu) = \frac{S}{1-C_3}$$
(B.2.4)

 ψ_{3p} é a solução particular exigida pela equação (3.1.1), pois assumiu-se que fontes constantes e isotrópicas estão uniformemente distribuidas no moderador. De condição de potência do reator, procede se ainda, a normalização do fluxo com respeito as fontes, isto é, assume-se que S = 1.

A solução geral do problema deve satisfazer as seguintes condições:

Condição de Simetria

O problema é simétrico com relação a x = 0 e x = γ

$$\psi_1(x,\mu) = \psi_1(-x,-\mu) -\alpha_1 < x < \alpha_1$$
 (B.2.5)

$$\psi_3(\mathbf{x}+\boldsymbol{\gamma},\boldsymbol{\mu}) = \psi_3(\mathbf{x}+\boldsymbol{\gamma},\boldsymbol{\mu}) \qquad \quad \boldsymbol{\alpha}_3 < \mathbf{x} < \boldsymbol{\alpha}_3 \qquad (B.2.6)$$

Condição de Interface

Os momentos definidos em (B.1.3) são contínuos na interface:

$$\phi_{1m}(\alpha) = \phi_{2m}(\alpha)$$
 m = 0, 1, ... N (B.2.7)

$$\phi_{2m}(\beta) = \phi_{3m}(\beta)$$
 m = 0, 1, ... N (B.2.8)

Das condições de simetria tem-se que:

$$B_1(\nu_{1i}) = B(-\nu_{1i})$$

 $i = 1, 2, ..., N'$ (B.2.9)

$$B_3(v_{3i}) = B(-v_{3i})$$
 $i = 1, 2, ..., N'$ (B.2.10)

Substituindo as equações (B.2.9) e (B.2.10) em (B.2.1) e (B.2.3), respectivamente, utilizando as condições de interface (B.2.7) e (B.2.8) tem-se que:

$$\sum_{i=1}^{N'} B_{1}(\nu_{1i}) [G_{1m}(\nu_{1i}) E_{1}(\nu_{1i}) + G_{1m}(-\nu_{1i})]$$

$$= \sum_{i=1}^{N'} [B_{2}(\nu_{2i}) G_{2m}(\nu_{2i}) - B_{2}(-\nu_{2i}) G_{2m}(-\nu_{2i}) E_{2}(\nu_{2i})] = 0$$

$$m = 0, 1, 2, ... N$$
(B.2.11)

$$\sum_{i=1}^{N^{2}} \left[B_{2}(\nu_{2i}) G_{2m}(\nu_{2i}) E_{2}(\nu_{2i}) - B_{2}(-\nu_{2i}) G_{2m}(-\nu_{2i}) \right]$$

8

$$-\sum_{i=1}^{N'} B_{3}(\nu_{3i}) [G_{3m}(\nu_{3i}) + G_{3m}(-\nu_{3i}) E_{3}(\nu_{3i})] = \frac{2\delta_{mo}}{1 - C_{3}}$$
(B.2.13)

onde

$$E_{1}(\nu_{1i}) = \exp(-\frac{2\alpha_{1}}{\nu_{1i}})$$
(B.2.13a)

$$E_2(v_{2i}) = \exp(-\frac{\alpha_2}{v_{2i}})$$
 (B.2.13b)

$$E_{3}(\nu_{3i}) = \exp\left(-\frac{2\alpha_{3}}{\nu_{3i}}\right)$$
(B.2.13c)

As equações (B.2.11) e (B.2.12) determinam um sistema não homogêneo de equações lineares, que pode ser escrito numa forma mais compacta:

$$\mathbf{M} \times \mathbf{B} \stackrel{=}{=} \mathbf{S} \tag{B.2.14}$$

onde M é a matriz do sistema, B o vetor dos coeficientes de expansão e S o vetor dos termos independentes. Resolvendo este sistema obtém-se os coeficientes de expansão, é, consequentemente a solução final do problema.

B.3 - Fluxo, Corrente, Fator de Utilização Térmica e Fatores de Desvantagem Térmica

O fluxo total de nêutrons é dado por:

$$\Psi(\mathbf{x}) = 2\pi \int \psi(\mathbf{x},\mu') P(\mu') d\mu'$$
 (B.3.1)

portanto para o combustível tem-se que:

$$\Psi_{2}(x) = \sum_{i=1}^{N'} B_{2}(\nu_{2i}) \left\{ \exp\left[-\frac{(x-\alpha)}{\nu_{2i}}\right] + B_{2}(-\nu_{2i}) \exp\left[\frac{(\beta-x)}{\nu_{2i}}\right] \right\}$$
(B.3.3)

e para o moderador

$$\Psi_{3}(x) = \sum_{i=1}^{N} B_{3}(\nu_{3i}) + \exp\left[-\frac{(-\beta + x)}{\nu_{3i}}\right] + \exp\left[-\frac{(2\gamma - \beta - x)}{\nu_{3i}}\right] + \frac{2}{1 - C_{3}}$$

onde

A corrente total de néutrons é dada por:

$$J(x) = 2\pi \int_{-1}^{1} \psi(x,\mu') P_{1}(\mu') d\mu' \qquad (B.3.5)$$

logo, para o combustível tem-se que:

$$J_{1}(x) = \sum_{i=1}^{N'} B_{1}(\nu_{i}) \ i \ G_{11}(\nu_{1i}) \exp \left[-\frac{(\alpha + x)}{\nu_{1i}}\right] + G_{11}(-\nu_{1i}) \exp \left[-\frac{(\alpha - x)}{\nu_{1i}}\right]$$
(B.3.6)

para o encamisamento

$$J_{3}(\mathbf{x}) = \sum_{i=1}^{N'} B_{2}(\nu_{2i}) G_{2i}(\nu_{2i}) \exp\left[-\frac{(\mathbf{x} - \alpha)}{\nu_{2i}}\right] + \frac{\sum_{i=1}^{N'} B_{2}(\nu_{2i}) G_{2i}(\nu_{2i}) \exp\left\{-\frac{(\beta - \mathbf{x})}{\nu_{2i}}\right\}$$
(B.3.7)

e para o moderador

$$J_{3}(x) = \Sigma_{1} B_{3}(\nu_{3i}) G_{3i}(\nu_{3i}) \exp\left[-\frac{(-\beta + x)}{\beta_{3i}}\right] + \frac{N'}{i = 1} B_{3}(\nu_{3i}) G_{3i}(-\nu_{3i}) \exp\left[-\frac{(2\gamma - \beta - x)}{\nu_{3i}}\right]$$
(B.3.8)

O fator de utilização térmica, já definido na secção 3.2, é dado por:

$$(1 - C_1) \alpha_1$$

$$(B.3.9)$$

$$(1 - C_1) \alpha_1 + (1 - C_2) \alpha_2 \xi_1 + (1 - C_3) \alpha_3 \xi_2$$

onde ξ_1 e ξ_2 são fatores de desvantagem térmica combustível-encamisamento e combustível-moderador, respectivamente, definidos como

$$\xi_1 = \frac{\phi_1}{\phi_1} \tag{B.3.10}$$

e

$$\xi_2 = \frac{\phi_3}{\phi_1}$$
(B.3.11)

sendo $\dot{\phi}_1, \phi_2 \in \phi_3$ dados por:

$$\phi_1 = \frac{1}{\alpha_1} \int_0^{\alpha} \psi_1(x) \, dx \tag{B.3.12}$$

$$\phi_2 = \frac{1}{\alpha_2} \int_{\alpha}^{\beta} \psi_2(x) \, dx \tag{B.3.13}$$

$$\phi_{3} = \frac{1}{\alpha_{3}} \int_{\beta}^{\gamma} \psi_{3}(x) dx$$
 (B.3.14)

que representam o fluxo médio no combustível, encamisamento e moderador respectivamente. Substituindo as equações (B.3.2), (B.3.3) e (B.3.4) nas equações (B.3.12), (B.3.13) e (B.3.14), tem-se finalmente que:

$$\phi_1 = \frac{1}{\alpha_1} \sum_{i=1}^{N'} B_1(\nu_{1i}) \nu_{1i} [1 - E_1(\nu_{1i})]$$
(B.3.15)

$$\phi_{2} = \frac{1}{\alpha_{2}} \sum_{i=1}^{N'} \nu_{2i} \left[B_{2}(\nu_{2i}) + B_{2}(-\nu_{2i}) \right] \left[1 - E_{2}(\nu_{2i}) \right]$$
(B.3.16)

$$\phi_{3} = \frac{1}{\alpha_{3}} \sum_{i=1}^{N'} \nu_{3i} B_{3}(\nu_{3i}) \left[1 - E_{3}(\nu_{3i}) \right] + \frac{2}{1 - C_{3}}$$
(B.3.17)

onde $E_1(\nu_{1i})$, $E_2(\nu_{2i})$ e $E_3(\nu_{3i})$ são os mesmos termos definidos em (B.2).

APÊNDICE C

PROCEDIMENTO NUMÉRICO COMPUTACIONAL

Os resultados numéricos apresentados no Capítulo IV foram obtidos no computador IBM 370/155 do Centro de Processamento de Dados do Instituto recenergia Atômica, sendo os cálculos feitos em dupla precisão e o programa escrito em linguage: Artran IV-H. O procedimento numérico computacional aplicado ao metodo de base e ao método P. Constructor aqui resumidamente.

C.1 - Método Exato

O esquema lógico de cálculo ap'.
 A ao método de Case é apresentado na Figura C.1.
 Iniciaimente foram calculados os autoval:
 Iniciaimente foram calculados os autoval:
 Iniciaimente foram calculados os autoval:

$$\nu_{o}^{(i+1)} = \nu_{o}^{(i)} - \frac{\Lambda(\nu_{o}^{(i)})}{\Lambda'(\nu_{o}^{(i)})}$$
(C.1.1)

onde $\Lambda(\nu)$ é a função de dispersão, definida na Eq. (2.3.11), $\Lambda'(\nu)$ a sua derivada e i a ordem de iteração. Para alcançar uma precisão de $10^{-1.0}$ foram necessárias 10 a 16 iterações correspondentes a valores de C de 0,3 a 0,99.

Para cálculo da função H foi utilizado uma combinação das equações (2.4.5) e (2.4.8) com a identidade⁽¹⁹⁾

$$\frac{1+\mu}{\nu_{o}+\mu} = \frac{1-\mu'}{\nu_{o}-\mu'} - \frac{(1-\nu_{o})(\mu+\mu')}{(\nu_{o}-\mu')(\nu_{o}+\mu)}$$
(C.1.2)

que resulta em:

$$H^{-1}(\mu) = \frac{\nu_{0} + \mu}{(1 + \mu)\nu_{0}} - \frac{C\mu}{2} - \frac{\nu_{0} + \mu}{1 + \mu} \int_{0}^{1} H(\mu') \frac{(1 - \mu')}{(\nu_{0} - \mu')(\mu' + \mu)} d\mu'$$
(C.1.3)

A equação (C.3.1) é resolvida iterativamente^{*}, sendo que, para o cálculo integral foi aplicado o método de quadratura de Gauss com 20 pontos de quadratura no intervalo $\mu \in (0,0,99)$ e 20 pontos no intervalo (0,99;1). Para alcançar a uma precisão de 10^{-10} foram necessárias 6 a 13 iterações correspondentes a valores de C de 0,3 a 0,99. A função H pode também ser resolvida iterativamente pela Eq. (2.4.5). no entanto, a Eq. (C.1.3) converge mais rapidamente.

Para o cálculo dos termos $H_i^{-1}(\pm v_j)$ aplicou-se diretamente a Eq. (2.4.6). Da mesma maneira, as funções de normalização foram calculadas diretamente pelas equações (2.5.6) e (2.5.8).

A função Η poderia ser calculada diretamenta pela Eq. (2.4.10), porêm, para a obminção de boa precisão, sería necessário muitos pontos de quadratura para μ ≃1.

Figure C.1 - Fluxograma para o método exato

Os coeficientes da expansão foram determinados resolvendo-se o sistema acoplado de integrais, iterativamente, segundo o ciclo ilustrado na Figura C.2. O critério de conversão adotado foi tal que os coeficientes tivessem uma variação menor que 10⁻⁸ em duas iterações consecutivas. Em média foram necessárias 17 iterações para cada caso. A ordem de cálculo dos coeficientes no ciclo de iteração foi alterada várias vezes em diversos casos sendo verificado que a velocidade de convergência é pouco afetada com estas alterações.

A precisão dos coeficientes foi verificada pelo teste dos momentos e pelo teste "ponto a ponto". O primeiro verifica a continuidade dos momentos das interfaces como segue:

$$\int_{-\infty}^{1} \psi_{1}(\alpha,\mu) \ \mu^{K} \ d\mu = \int_{-1}^{1} \psi_{2}(\alpha,\mu) \ \mu^{K} \ d\mu \quad , \quad \kappa = 0, 1, 2, \dots$$
 (C.1.4)

$$\int_{-1}^{1} \psi_{2}(\beta,\mu) \ \mu^{\kappa} \ d\mu = \int_{-1}^{1} \psi_{3}(\beta,\mu) \ \mu^{\kappa} \ d\mu \qquad , \quad \kappa = 0, \, 1, \, 2, \, \dots \qquad (C.1.5)$$

No caso particular $\kappa = 0$, as equações (C.1.4) e (C.1.5) testam a continuidade do fluxo total nas interfaces $x = \alpha$ e $x = \beta$, respectivamente, e para $\kappa = 1$ a continuidade da corrente.

O teste dos momentos foi aplicado até a ordem κ = 25, sendo que a menor precisão obtida foi de 5 ou 6 dígitos significativos conforme o caso.

O teste ponto a ponto verifica a continuidade do fluxo angular nas interfaces:

$$\psi_1(\alpha,\mu_i) = \psi_2(\alpha,\mu_i)$$
, $\mu_i \in (-1,1)$ (C.1.6)

$$\Psi_2(\beta,\mu_i) = \Psi_3(\beta,\mu_i)$$
, $\mu_i \in (-1,1)$ (C.1.7)

Em gera! a precisão obtida pelo teste ponto a ponto é a mesma verificada pelo teste dos momentos. No entanto, o teste dos momentos é o mais apropriado pois fornece a precisão media devido a integração que se faz sobre $\mu \in (-1,1)$.

Para o cálculo do fluxo total, corrente, fator de utilização térmica e fatores de desvantagem térmica, aplicou-se diretamente as equações (3.2.2) a (3.2.4), (3.2.6) a (3.2.9), (3.2.18) e (3.2.19). O tempo de processamento (C.P.U.) gasto para executar todos os cálculos é, em média, de 3 a 4 minutos para cada caso.

C.2 - Método P_N

O esquema lógico de cálculo que foi aplicado ao método P_N é apresentado na Figura C.3.

Inicialmente foram calculados os autovalores ν_i pelo método do passo, que consiste em procurar a raiz do polinômio D(ν), dado pela equação (B.1.15), verificando-se a variação do sinal deste polinômio a medida que se fornece incrementos convenientes a um dado valor inicial até alcançar a precisão desejada. Para o cálculo das autofunções G_n(ν_i), aplicou-se diretamente a equação (B.1.13).

Figura C.2 - Esquema de iteração dos coeficientes da expansão

Figura C.3 — Fluxograma para o método P_N

Para o cálculo dos coeficientes foi utilizado o método de Gauss-Seidel⁽²⁴⁾ a resolução do sistema de equações lineares dado pelas equações (B.2.11) e (B.2.12). O teste de convergência aplicado ao cálculo dos autovalores e dos coeficientes foi de 10⁻⁸. A precisão dos coeficientes foi verificada testando-se, numericamente, a continuidade dos momentos e do fluxo angular nas interfaces, do qual se obteve no mínimo 9 dígitos significativos.

Para o cálculo do fluxo total, fator de utilização térmica e fatores de desvantagem térmica, aplicou-se diretamente as equações (B.3.2) a (B.3.4) e (B.3.9) a (B.3.11).

ABSTRACT

As an idealized model of plate type fuel assemblies for nuclear reactors, three-slab cells are analysed numerically based on the exact solution of the transport equation in the one-group isotropic scattering model.

From the equations describing the interface conditions, a set of regular integral equations for the coefficients of the singular eigenfunctions expansions is derived using the half-range orthogonality relations of the eigenfunctions and the recently developed method of regularization. Numerical solutions are obtained by solving this set of equations iteratively.

The thermal utilization factor and thermal disadvantage factors as well as flux and current distributions are reported for the first time for various sets of parameters.

The accuracy of the P_N approximations is also analysed compared to the exact results.

REFERÊNCIAS BIBLIOC & ACAS

- 1. ABRAMOWITZ, M & STEGUN, I. A. Handbook of mathematical functions. New York, N. Y., Dover, 1965.
- 2. AMBARZUMIAN, V A. Diffuse reflection of light by a foggy medium. C. R. Acad. Sci. USSR, 38:229-32, 1947
- 3. BELL, G. I. & C. STONE, S. Nuclear reactor theory. New York, N. Y., Van Nostrand Reinhold, 1970.
- 4. BURKART, A. R. Application of invariance principles to critical problems in reflected reactors. Raleigh, N. C., North Caroline State Univ., 1975. (Ph.D. Thesis).
- BURNISTON, E. (; MULLIKIN, T. W.; SIEWERT, C. E. Steady-State solutions in two group theory of neutron diffusion, J. math. Phys., 13:1461-5, 1972.
- CARLSON, B. G. Solution of transport equation by S_n eproximations. Los Alamos, N. M., Los Alamos Scientific Lab., 1953. (LA-1599).
- 7. CASE, K. M. Elementary of the transport equation and their applications. Ann. Phys., 9:1-23, 1960.
- CASE, K. M. & SWEIFEL, P. F. Existence and Uniqueness theorems for the neutron transport equation. J. math. Phys., <u>4</u>:1376-85, 1963.
- 9. CASE, K. M. & ZWEIFEL, P. F. Linear transport theory. Reading, Mass., Addison-Wesley, 1987.

10. CHANDRASEKHARS, S. Radiative transfer. London, Oxford University, 1950.

As referências bibliográficas relativas a documentos localizados pelo IEA foram revistas e enquadradas na NB-66 da ABTN.

- 11. DAVISON, B. Angular distribution due to an isotropic point source and spherically symmetrical eigensolutions of the transport equation. Montreal, National Research Council of Canada, Jan. 1945. (MT-112).
- 12. DAVISON, B. Neutron transport theory. London, Oxford University, 1957.
- ERDMANN, R. C. & LURIE, H. A two-region problem in time-dependent monoenergetic neutron transport theory. Nucl. Sci. Engng., 28:190-7, 1967.
- ERDMANN, R. C. & SIEWERT, C. E. Green's function for the one-speed transport equation in spherical geometry. J. math. Phys., <u>9</u>81-9, 1968.
- 15. FERZIGER, J. H. & ROBINSON, A. H. A Transport Theoretic Calculation of Disadvantage factor. Nucl. Sci. Engng., <u>21</u>:382-9, 1965.
- 16. GALLONE, S. & GHILARDOTTI, G. On the use of Case's general solution of the transport problems. *Nuovo Cim.*, 31:203-18, 1964.
- GARCIA, R. D. M. O problema da criticalidade para reatores tipo placa refletida na teoria de transporte em dois grupos de energia. São Paulo, 1977. (Dissertação de mestrado, Escola Politécnica, Universidade de São Paulo).
- 18. HOPF, E. Mathematical Problems of radiative equilibrium. London, Cambridge University, 1934.
- 19. ISHIGURO, Y. Multiregion problems in plane geometry and numerical technique in one-group transport theory. São Paulo, Instituto de Energia Atômica, Dez. 1977. (IEA-Pub-491).
- 20. ISHIGURO, Y.& GARCIA, R. D. Numerical solutions of two-media problems in two-group neutron transport theory. São Paulo, Instituto de Energia Atômica, dez. 1974. (IEA-Pub-494).
- 21. ISHIGURO, Y.& JORGE, E. Two-group Milne problem: a numerical study of the effect of scattering anisotropy. São Paulo, Instituto de Energia Atômica, Ago. 1973. (IEA-Pub-306).
- 22. ISHIGURO, Y. & MAIORINO, J. R. Two half-space Milne problem in two group neutron transport theory. Nucl. Sci. Eneggg., 63:507-9, 1977.
- JAUHO, P. & RAJAMAKI, N. Energy-Dependent neutron Transport theory in adjacent half-space. Nucl. Sci. Engng., <u>43</u>:145-53, 1971.
- 24. KELLY, L. G., Handbook of numerical methods and applications. London, Addison-Wesley, 1967.
- KUSGER, I. & ZWEIFEL, P. F. Time-dependent one-speed albedo problem for a semi-infinite medium. J. math. Phys., 6:1125-30, 1965.
- KUSCER, I.; McCORMICK, N. J.; SUMMERFIELD, G. C. Octogonality of Case's eigen function in one-speed transport theory. Ann. Phys., <u>30</u>:411-21, 1964.
- 27. KUSZELL, A. The critical problems for multilayer slab systems. Acta physiol. pol., 20:567-89, 1961.
- 28. LAMARSH, J. R. Introduction to nuclear reactor theory. Reading, Mass., Addison-Wesley, 1966.
- LEONARD, A. & FERZIGER, J. H. Energy-dependent neutron transport theory in plane geometry III. Half-range completeness and half-space problem. Nucl. Sci. Engng., 26:181-91, 1966.

- 30. McCORMICK, N. J. Neutron, transport for anisotropic scattering in adjacent half-space I. Theory. Nucl. Sci. Engng, 37 243-51, 1969.
- 31, McCORMICK, N. J. & DOYAS, R. J. Neutron transport for anisotropic scattering in adjacent half-space II. Numerical results. Nucl. Sci. Engng, 37:252-61, 1969.
- 32. McCORMICK, N. J. & KUSCER, I. Bi-ortogonality relations for solving half-space transport problems. J. math. Phys., 7:2032-45, 1966.
- McCORMICK, N. J. & KUSCER, I. Half-space neutron transport with linearly anisotropic scattering. J. math. Phys., 6:1939-45, 1965.
- 34, McCORMICK, N. J. & MENDELSON, M. R. Transport solution of the one-speed Slab Albedo , prohiem. sem local, editor, 1963. (TID-20540).
- 35. MARK, J. C. The spherical harmonics method, J. Chalk River, Ont., National Research Council of Canada, 1957. (CRT-340).
- 36. METCALF, D. R. & ZWEIFEL, P. F. Solution of two group neutron transport equation, 2. Nucl. Sci. Engng, 33318-26, 1968.
- 37. MIKA, J. Neutron transport with anisotropic scattering Nucl. Sci. Engng, 11:415-27, 1961.
- 38. MILNE, E. A. Radiative equilibrium in the outer layer of a star. Mon. Not. R. astr. Soc., 81:361, 1921.
- 39, MITSIS, G. J. Transport solution to the monoenergetic critical problems. Argonne, III., Argonne National Lab., 1963. (ANL-6787).
- 40. MITSIS, G. L. Transport solutions to the One-Dimensional critical problem. Nucl. Sci. Engng, 17,55-64, 1963.
- OZISIK, M. N. & SIEWERT, C. E. Several particular solutions of the one speed transport equation. Nucl. Sci. Engng, <u>140</u>:491-4, 1970.
- 42. PAHOR, S. A new approach to half-space transport problems. Nucl. Sci. Engng, 26:192-7, 1966.
- 43. PAHOR, S. & ZWEIFEL, P. F. Invariant Imbedding and Case Eigenfunctions. J. math. Phys., 10:2220-6, 1969.
- 44. REITH, D. & SIEWERT, C. E. Two-group neutron transport theory with anisotropic scattering. Nucl. Sci. Engng, 47:156-68, 1972.
- 45. SHURE, F. & NATELSON, M. Anisotropic scattering in half-space transport probelms. Ann. Phys., 26274-91, 1964.
- SIEWERT, C. E. & BOND, G. R. The effect of linearly anisotropic scattering on disadvantage factor calculations. Nucl. Sci. Engng, 35:277-82, 1969.
- 47. SIEWERT, C. E. & BURKART, A. R. On the critical reactor problem for a reflected slab. Nucl. Sci. Engng, <u>58</u>:253-5, 1975.
- 48. SIEWERT, C. E. & ISHIGURO, Y. The milne problem for two adjacent half-space in the theory of neutron dilfusion with anisotropic scattering. São Paulo, Instituto de Energia Atômica, mar. 1976, (IEA Pub 409)

- 49 SIEWERT, C. E. & ISHIGURO, Y. Two-group neutron transport theory half-range orthogonality, normalization integrals applications and computations. J. Nucl. Energy, 26:251-69, 1972.
- 50. SIEWERT, C. E. & SIEH, P. F. Two-group transport theory. J. nucl. Energy, 21:383-92, 1967.
- 51. SIEWERT, C. E.; BURNISTON, E. E.; KRIESE, J. T. Two-group neutron transport theory: existence and uniqueness of H-matriz. J. nucl. Energy, 26:469-82, 1972.
- 52. VAN KAMPEN, N. G. On the theory of stationary waves in plasmas. *Physica (Amsterdam)*, <u>21</u>949-63, 1955.
- 53. WESTFALL, R. M. & METCALF, D. R. Singular Eigenfunctions solution of the monoenergetic neutron transport equation for finite radially reflected critical cylinders. *Nucl. Sci. Engng.*, 52:1-11, 1973.
- 54. WIGNER, E. P. Mathematical problems of nuclear reactor theory. Proc. Symp. appl. Math., 11:89, 1959.
- 55. YOSHIMURA, T. & KATSURAGI, S. Multigroup Treatment of neutron transport in plane geometry. Nucl. Sci. Engng, 33:297-302, 1968.
- 56. ZELAZNY, R. Exact solution of a critical problem for a slab. J. math. Phys., 2:538-42, 1961.
- 57. ZELASNY, R. & KUSZELL, A. Two-group approach in neutron transport theory in plane geometry. Ann. Phys., <u>16</u>:81-5, 1961.

INSTITUTO DE ENERGIA ATÔMICA Caixa Postal, 11049 — Pinheiros CEP 05508 01000 — São Paulo — SP

Telefone: 211-6011 Endereço Telegráfico - IEATOMICA Telex - 011-23592 IENA BR