INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES SECRETARIA DA INDÚSTRIA, COMÉRCIO, CIÊNCIA E TECNOLOGIA AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

ESTUDO DOS PARÂMETROS INSTRUMENTAIS PARA A DETERMINAÇÃO DE Ca, Cr, Cu, Fe, Mn, e Ni em UO2 NUCLEARMENTE PURO PELA TÉCNICA DE FLUORESCÊNCIA DE RAIOS X

Vera Lucia Ribeiro Salvador

Dissertação apresentada ao Instituto de Pesquisas Energéticas e Nucleares como parte dos requisitos para obtenção do Grau de "Mestre - Área de Concentração; Tecnologia Nuclear".

6

Orientador: Dr. Kengo Imakuma

São Paulo 1982 INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES SECRETARIA DA INDÚSTRIA, COMÉRCIO, CIÊNCIA E TECNOLOGIA AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

ESTUDO DOS PARÂMETROS INSTRUMENTAIS PARA A DETERMINAÇÃO DE Ca, Cr, Cu, Fe, Mn, e Ni em UO₂ NUCLEARMENTE PURO PELA TÉCNICA DE FLUORESCÊNCIA DE RAIOS-X

VERA LUCIA RIBEIRO SALVADOR

Dissertação apresentada ao Instituto de Pesquisas Energéticas e Nucleares como parte dos requisitos para obtenção do grau de "Mestre" Área de Concentração: Tecnologia Nuclear

Orientador:

Dr. KENGO IMAKUMA

SÃO PAULO 1982

AOS MEUS PAIS PELO CARINHO E INCENTIVO

.

.

AGRADECIMENTOS

Agradeço, em especial,

e,

- ao Dr. Kengo Imakuma pela orientação, colaboração e co<u>n</u> fiança depositada na realização deste trabalho,
- à Ivone Mulako Sato e João Francisco Fernandes pela am<u>i</u> zade e apoio e pelas proveitosas discussões e vali<u>o</u> sas sugestões
- ao Dr. Antonio Roberto Lordello pelo fornecimento dos padrões de urânio,
- ao Afonso Rodrigues de Aquino pela valiosa colaboração,
- ao Eng. José Américo Andreatta que muito colaborou no fornecimento de recursos para a manutenção do Espe<u>c</u> trômetro de Fluorescência de Raios-X,
- à Amélia Yamazaki, Eguiberto Galego e Mônica C. da Fo<u>n</u> seca pela colaboração nos trabalhos de laboratório,
- ao Mauro Gomes de Araujo pela execução dos desenhos,
- à Irene, Nelson, Miriam, Paulo e Tânia Cristina pela amizade, união, apoio e colaboração,
- aos meus familiares e amigos pelo incentivo e encoraj<u>a</u> mento,
- ao Instituto de Pesquisas Energéticas e Nucleares que permitiu a realização deste trabalho e a Comissão N<u>a</u> cional de Energia Nuclear pelo suporte financeiro.

Resumo

Estudo dos Parâmetros Experimentais para a Determinação de Ca, Cr, Cu, Fe, Mn e Ni em UO₂ Nuclearmente P<u>u</u> ro pela Técnica de Fluorescência de Raios-X

Vera Lucia Ribeiro Salvador

Apresenta-se, neste trabalho, um método analítico para a determinação simultânea de baixas concentrações de Ca, Cr, Cu, Fe, Mn e Ni em UO₂ nuclearmente puro pela técnica de fluorescência de raios-X, sem a necessidade de processos de separação química.

Um estudo foi realizado para a otimização das con dições experimentais ligadas ao espectrômetro e o limite mín<u>i</u> mo de detecção atingido (entre 4 - 7 μ g/gU), satisfaz as ex<u>i</u> gências do controle da qualidade do combustível nuclear.

As amostras foram preparadas na forma de pastilhas prensadas de dupla camada utilizando-se ácido bórico como m<u>a</u> terial aglutinante.

A determinação dos teores dos microconstituintes foi realizada através das medidas das intensidades das radia ções K_{α} de primeira ordem, inter-relacionando-se os padrões e as amostras.

Um estudo da precisão, exatidão e aceitabilidade do método proposto foi realizado para cada elemento estudado. Os valores obtidos para a precisão variam entre 2 e 10% e para a exatidão são inferiores a 7%.

ABSTRACT

STUDY OF THE EXPERIMENTAL PARAMETERS FOR THE DETERMINATIONS OF CA, Cr, Cu, Fe, MN AND NI ON THE NUCLEAR GRADE UO₂ By X-Ray FLUORESCENCE TECHNIQUE

Vera Lucia Ribeiro Salvador

An analytical method for the simultaneous determinations of low concentrations of Ca, Cr, Cu, Fe, Mn and Ni on the nuclear grade UO_2 by X-ray fluorescence technique, without the use of chemical treatment, is described.

The optimization of the experimental conditions was established on the X-ray fluorescence spectrometer and a low limit of detection (4 - 7 μ g/gU) was achieved which satisfies the requirement in the nuclear fuel specification.

The samples were prepared in the form of double layer pressed pellets using boric acid as a binding agent.

The characteristic first order K_{α} line intensity of each minor components was measured and the values of its concentrations were deduced using respective standard calibrations curves.

The precision, accuracy and acceptability of the method were determined for all elements. The values of the precision are in the range of 2 - 10% and the accuracy are lower than 7%.

Índice

	INTI	RODUÇÃO	0	1			
	I -	- CONSIDERAÇÕES GERAIS SOBRE AS IMPUREZAS PRESENTES NO UO ₂					
	II-	CONSIDERAÇÕES SOBRE A TÉCNICA DE FLUORESCÊNCIA DE RAIOS-X					
		II.l.	Fenômeno de Fluorescência	10			
		II.2.	Intensidade Fluorescente de um Elemento Presente numa Mistura Multicomponente em Baixa Concentração	10			
		тт.3.	Efeito Matriz	14			
			II.3.1. Efeito de Absorção de Massa para as Matrizes de U ₃ O ₈ e UO ₂	14			
		II.4.	Influência dos Parâmetros Instrumentais na Intensidade Fluorescente	15			
			II.4.1. Excitação	15			
			II.4.1.1. Tubo de Raios-X	16			
			II.4.1.2. Corrente e Voltagem	19			
			II.4.2. Colimadores	23			
			II.4.3. Cristal Analisador	24			
			II.4.4. Detectores	25			
			II.4.5. Analisador de Altura de Pulsos	27			
а 1	111 -	PARTE	EXPERIMENTAL	29			
		III.1	. Preparação das Amostras	29			
			III.l.l. Reagentes Utilizados	29			
			III.1.2. Procedimento	29			
			III.1.3. Preparação dos Padrões	30			
		III.2	. Espectrômetro de Fluorescência de Raios-X	30			
		111.3	. Comportamento das Radiações Características K_{α} de Primeira Ordem dos Elementos Estudados.	31			

III.4. Estabelecimento das Condições de Operação	
para o Espectrômetro de Fluorescência de	
Raios-X	39
III.4.1. Condições para a Excitação	39
III.4.2. Colimador, Cristal Analisador,	
Detector e Tempo Fixo de Contagem	44
III.4.3. Analisador de Pulsos	44
III.5. Verificação do Efeito Matriz no UO $_2$ e U $_3$ O $_8$	46
IV-RESULTADOS EXPERIMENTAIS E TRATAMENTO ESTATÍSTICO	55
IV.1. Determinação das Curvas de Calibração	55
IV.2. Testes Estatísticos Aplicados às Curvas de	
Calibração	65
IV.3. Precisão e Exatidão do Método Proposto	66
IV.4. Sensibilidade e Limite Minimo de Detecção	74
IV.5. Aplicação do Método aqui proposto na Análise	
Quantitativa de Microconstituintes em UO ₂	75
DISCUSSÃO E CONCLUSÃO	77
REFERÊNCIAS BIBLIOGRÁFICAS	81

.

INTRODUÇÃO

A maioria dos reatores nucleares térmicos, principal mente os moderados e refrigerados a água leve ou pesada, como os BWR (Boiling Water Reactor), PWR (Pressurized Water Reactor), CANDU (Canadian Deuterium Uranium) e SGHWR (Steam Generating Heavy Water Reactor) empregam como combustível pastilhas sint<u>e</u> rizadas de UO₂. Estes reatores ⁽¹²⁾ predominam no mercado inte<u>r</u> nacional nuclear existindo várias usinas que os utilizam para a produção de energia elétrica.

Os reatores tipo AGR (Advanced Gas-Cooled Reactor) que são moderados com grafita e refrigerados a CO_2 , também utilizam o UO₂ como combustível na forma de pastilhas ou barras.

Como o combustivel é a parte mais importante de um re<u>a</u> tor nuclear, é necessário que as suas especificações sejam s<u>a</u> tisfeitas e obedecidas rigorosamente para garantir segurança e economia durante a sua operação, uma vez que o seu comportame<u>n</u> to pode afetar diretamente as características do reator, como níveis de potência, razão de queima, estabilidade e transferê<u>n</u> cia de calor.

As especificações para o combustivel nuclear, como t<u>i</u> po de material, dimensões, massa, densidade, composição isotóp<u>i</u> ca, composição química e outras, fazem parte do projeto do re<u>a</u> tor no qual será utilizado.

Essa grande utilização do UO_2 na tecnologia nuclear d<u>e</u> ve-se ao fato dele apresentar um processo de fabricação e repr<u>o</u> cessamento relativamente bem conhecido e desenvolvido, além de apresentar uma série de vantagens, como a grande resistência aos danos por irradiação e capacidade de retenção dos produtos de fissão ^(11, 17, 24, 37).

A necessidade do combustível nuclear apresentar uma

alta pureza fez com que muitos métodos químicos de análise fo<u>s</u> sem desenvolvidos para a determinação dos seus microconstitui<u>n</u> tes ⁽²⁹⁾. Alguns desses métodos apresentam um limite mínimo de detecção muito baixo sendo que a maioria necessita de separ<u>a</u> ção química prévia.

A técnica de análise por fluorescência de raios-X é muito utilizada na determinação de um elemento presente numa mistura multicomponente não necessitando, na maioria das v<u>e</u> zes, de separação química prévia. Apresenta geralmente uma boa sensibilidade e precisão, facilidade na preparação das amo<u>s</u> tras além de ser relativamente rápida.

Neste trabalho, procurou-se verificar a viabilidade desta técnica ser incluída no controle da qualidade rotineiro do UO₂ nuclearmente puro, para a determinação dos teores de a<u>l</u> guns dos microconstituintes presentes sem fazer uso de separ<u>a</u> ção química.

Com essa finalidade, teve-se como objetivo a realiza ção de um estudo para se estabelecer os melhores parâmetros ex perimentais ligados a um espectrômetro de fluorescência de raios-X convencional, para que fosse possível a determinação desses microconstituintes. Foram selecionados tubo de raios-X, cristal analisador e detector adequados para as medidas das intensidades das radiações fluorescentes características de ca da elemento estudado. Também foram otimizadas voltagem e ampe ragem para o gerador de raios-X e tempo fixo de contagem, aber tura de janela e linha de base para o analisador de pulsos.

Foram escolhidos para serem determinados os elementos Ca, Cr, Cu, Fe, Mn e Ni que, apesar de possuirem baixa secção de choque de absorção de nêutrons termicos, são de fácil cont<u>a</u> minação durante o processo de fabricação do combustivel.

Os padrões foram preparados na forma de pastilhas

COMISCAC NACION/L DE ENERGIA NUCLEAR/SP - IPEN

prensadas de dupla camada, tendo como matriz o U₃O₈, porque o óxido nesta forma é muito mais estável, podendo-se utilizá-los por um bom período de tempo, desde que sejam guardados em de<u>s</u> secadores.

No método proposto, os microconstituintes presentes na amostra de UO₂, podem ser determinados na própria matriz de UO_2 , sem ser necessário a calcinação para obter-se a matriz de U_3O_8 , isto porque, o efeito de absorção de massa é semelhante para as duas matrizes.

A precisão e exatidão do método proposto em termos de variação percentual, foram verificadas pela determinação das concentrações dos elementos no padrão 95-2 de U₃0₈ do New Brunswick Laboratory.

As concentrações dos elementos nas amostras foram d<u>e</u> terminadas através de curvas de calibração obtidas pelo Método de Mínimos Quadrados ^(6, 33).

A reprodutibilidade do método e a linearidade das cu<u>r</u> vas de calibração foram verificadas através da interpretação quantitativa dos resultados experimentais fazendo-se uso de testes estatísticos.

I - CONSIDERAÇÕES GERAIS SOBRE AS IMPUREZAS PRESENTES NO UO2

O pó de UO₂ para a confecção das pastilhas sinterizadas, pode ser originado principalmente pelos processos DUA (Diur<u>a</u> nato de Amônio) ^(5, 9), e AUC (Carbonato de Amônio e Uranila) ^(7, 9), que dependendo ainda, da origem do concentrado de ur<u>â</u> nio de partida, pode apresentar diferenças nos teores de seus microconstituintes ⁽¹⁹⁾.

Esse pó, depois de passar por uma série de processos, inclusive o de enriquecimento, sofre uma compactação e uma si<u>n</u> terização em atmosfera inerte. A pastilha pode então ser usin<u>a</u> da, se necessário, para adquirir as dimensões desejadas.

Numa etapa seguinte, as pastilhas passam por um con trole da qualidade para verificar se existe ou não constância nas propriedades do UO_2 e se todas as especificações são obed<u>e</u> cidas. Nesta etapa, o controle da composição química é um f<u>a</u> tor muito importante, pois está ligado com a economia de nê<u>u</u> trons no núcleo do reator devendo ser observado os máximos pe<u>r</u> missíveis de impurezas.

Os elementos químicos que constituem as impurezas no UO₂ podem ser divididos em grupos ⁽²⁹⁾:

- elementos com alta secção de choque de absorção de nêutrons térmicos. Entre eles encontram-se o boro , o cádmio, as terras raras, o lítio e a prata que são os que podem interferir seriamente na economia de nêutrons no núcleo do reator.
- elementos mais comuns. Entre eles encontram-se o só dio, o magnésio, o silício, o alumínio, o cálcio, o cobre, o molibdênio, o ferro, o cromo, o manganês e o níquel.

 elementos que constituem as impurezas gasosas. En tre eles encontram-se o oxigênio, o hidrogênio, o nitrogênio e o carbono.

Muitas impurezas podem ser introduzidas durante as próprias etapas do processo de fabricação do combustível. É o caso do ferro, cobre, níquel, manganês e cromo, que muitas v<u>e</u> zes são provenientes da corrosão das paredes dos equipamentos que são constituídos por ligas de Monel, Inconel ou Aço ⁽⁴⁾.

Para ser estimado o teor máximo das impurezas que 0 combustivel pode apresentar ⁽²⁶⁾, é necessário verificar a in fluência que elas terão no seu processos de fabricação, poden do prejudicar as suas propriedades mecânicas e diminuir a sua densidade. Em relação às suas características nucleares pro priamente ditas, deve-se considerar a secção de choque de ab sorção de nêutrons térmicos para cada impureza e verificar 0 seu "equivalente em boro" total, que não deve ultrapassar a um valor pré estabelecido pelo projeto do reator no qual será uti lizado.

Na Tabela I-l encontram-se os limites máximos de imp<u>u</u> rezas permissíveis nas pastilhas sinterizadas de UO₂, segundo as normas da ASTM (3).

Para que as pequenas concentrações das impurezas po<u>s</u> sam ser determinadas, são necessárias técnicas muito sensíveis, como por exemplo a espectrografia de emissão (15, 28), a e<u>s</u> pectrofotometria de absorção atômica (1, 2) e a análise por ativação com nêutrons (25). Todas, no entanto, apresentam lim<u>i</u> tações em relação aos elementos que podem ser determinados, se<u>n</u> do que para uma caracterização completa do combustível estas técnicas analíticas devem ser combinadas.

Na técnica de fluorescência de raios-X, também obse<u>r</u> vam-se algumas limitações, principalmente quando se utiliza um

<u>TABELA I-1</u> - Limite Máximo de Concentração das Impurezas Permissível nas Pastilhas Sinterizadas de $UO_2^{(3)}$.

Elemento	Lim. Máx. de Conc.(µg Impureza/gU)
Al	250
С	100
Ca + Mg	200
Cl	25
Cr	250
Co	100
F	15
Н	2
Fe	500
Ni	250
N	75
Si	250
Th	10

espectrômetro convencional que não apresenta poder de resol<u>u</u> ção para os elementos de número atômico menor que doze (12). Neste caso, o Li, Be e B que são os grandes absorvedores de nêutrons térmicos não podem ser determinados.

A determinação de impurezas em óxidos de urânio pela técnica de fluorescência de raios-X apresenta duas grandes di ficuldades, uma é o seu espectro de energia que é constituído por muitas radiações características do urânio e a outra é а sua considerável absorção das radiações fluorescentes, que di minui muito a sensibilidade do método. Esta última, é sentida mais fortemente pelos elementos Mg ($\lambda = 0,9889$ nm), Al (λ 0,8339 nm), Si (λ = 0,7126 nm), P (λ = 0,6155) nm) e S (λ 0,5373 nm) que apresentam um limite mínimo de detecção da or dem de 250 a 500 μ g/gU.

Os elementos Ag e Cd apresentam uma secção de choque de absorção de nêutrons térmicos relativamente grande, porta<u>n</u> to apresentam um limite máximo de concentração permissível no UO_2 muito baixo da ordem de 0,2 a l µg/gU. Para esta matriz,a técnica de fluorescência de raios-X, não atinge este limite de detecção. O mesmo ocorre para os elementos terras raras, Gd,Dy, Sm e Eu, cuja secção de choque de absorção de nêutrons térm<u>i</u> cos é muito maior.

O elemento Zn também não pode ser determinado na pr<u>e</u> sença do urânio, devido a sua radiação ZnK_{α} (n=1) coincidir com a radiação UL_{β_1} (n=2) e não se observar as suas radiações ZnK_{β} (n=1) e ZnK_{α} (n=2), devido a sua baixa concentração.

São encontradas poucas referências bibliográficas que tratam da determinação de impurezas em compostos de urânio p<u>e</u> la técnica de fluorescência de raios-X, sem a utilização de s<u>e</u> paração química, sendo que a maioria delas, trata apenas da d<u>e</u> terminação de um único elemento.

Utilizando o método de solução Hakkila, Hurley e Waterbury ⁽¹⁶⁾ determinaram Zr e Mo em carbetos de urânio-zi<u>r</u> cônio-molibidênio numa faixa de concentração de 5 a 50% com uma precisão de 1%. Stoecker e McBride ⁽³⁵⁾ determinaram Th em concentrações inferiores a 1,5% em minérios de urânio.

Utilizando o método de pastilhas fundidas para a pr<u>e</u> paração das amostras, Knobe e Waldron ⁽²³⁾ determinaram Ca n<u>u</u> ma faixa de concentração de 0,03 a 1,75% em minérios de urânio. Taylor et al. ⁽³⁶⁾ determinaram Ni, Cr, Fe e W em mistura de 15% de PuO₂ em U₃O₈. Diaz-Guerra, Bayón e Roca ⁽¹⁴⁾ determin<u>a</u> ram As, Ca, Fe, Mo, P, S, Si, Th, e V em concentrados de ur<u>â</u> nio. No laboratório da CETAMA ⁽¹⁰⁾ foram determinados As, Ca , Cu, Fe, PO₄, SO₄, SiO₂, ThO₂ e V₂O₅ em concentrados de urânio, tendo como limite mínimo de detecção concentrações entre 0,005 a 0,05%.

Neste trabalho, para a preparação das amostras, util<u>i</u> za-se o método das pastilhas prensadas de dupla camada, por ser um método muito fácil e simples, além de ser o mais indic<u>a</u> do para a determinação de microconstituintes, uma vez que os processos que envolvem fusão ou solução diluem muito a amostra, diminuindo as intensidades das radiações características e consequentemente a sensibilidade do método.

Para ser estabelecida a faixa de concentração que d<u>e</u> veria ser usada para a determinação de Ca, Cr, Cu, Fe, Mn e Ni no UO₂, tomou-se como base as normas de especificações da KWU ⁽¹⁸⁾, CNEN ⁽⁹⁾, ASTM ⁽³⁾ e BELGONUCLEAIRE ⁽⁷⁾.

Na Tabela I-2 encontram-se as concentrações máximas permissíveis para o Ca, Cr, Cu, Fe, Mn e Ni adotadas pela CNEN, ASTM e BELGONUCLEAIRE.

<u>TABELA 1-2</u> - Concentrações Máximas Permissíveis (μ g/gU) no UO₂.

.

Flamento	ASTM	STM CNEN BELGONUCL		LEAIRE	
	pastilha	pastilha	pastilha	põ	
Ca	-	100	100	100	
Cr	250	200	400	300	
Cu	-	-	80	60	
Fe	500	300	400	300	
Min	-	-	20	30	
Ni	250	100	200	200	

II - CONSIDERAÇÕES SOBRE A TÉCNICA DE FLUORESCÊNCIA DE RAIOS-X

II.l. Fenômeno de Fluorescência

Os materiais, ao sofrerem irradiação por raios-X, ab sorvem uma parte dessa energia incidente e um elétron de um ní vel energético de um átomo pode ser removido, desde que o quantum de energia absorvida seja maior que a energia de seu nível energético. Neste processo, uma parte da energia é consu mida no trabalho de remoção do elétron e o restante aparece co mo energia cinética do fotoelétron. Portanto, quando um elé tron é removido no seu lugar fica um vazio que é preenchido pe lo elétron de um nível energético vizinho. Neste processo, uma radiação de energia correspondente à diferença das energias en tre os dois níveis é emitida.

Portanto, quando ocorrem transições de elétrons das c<u>a</u> madas L e M para a K originam-se as radiações da série K(K_{α}, K_{β}). Se ocorrer transições das camadas M, N e O para a L originam - se as radiações da série L (L_{α}, L_{β}, L_{γ}, ...). Estas radiações c<u>a</u> racterísticas possuem comprimento de onda diferentes para cada elemento e são usadas nas análises qualitativa e quantitativa dos mesmos.

II.2. Intensidade Fluorescente de um Elemento Presente numa Mistura Multicomponente em Baixa Concentração

A intensidade fluorescente de um elemento presente n<u>u</u> ma mistura multicomponente não depende, unicamente, de sua co<u>n</u> centração, mas também dos elementos associados.

Considerando-se uma amostra que contém os elementos A, B, C, ... com concentrações $C_A^{}$, $C_B^{}$, $C_C^{}$, ... respectivamente, de modo que $C_A + C_B + C_C \dots = 1$, a intensidade fluorescente em<u>i</u> tida pelo elemento A, provocada pela incidência da radiação pr<u>i</u> mária do tubo de raios-X, pode ser calculada pela seguinte r<u>e</u> lação ^(20, 21, 32):

$$\mathbf{I}_{\mathbf{A}} = \frac{\mathbf{q}}{\mathrm{sen}\psi} \mathbf{f}_{\mathbf{K}}^{\mathbf{W}} \mathbf{K}^{\mathbf{P}} \mathbf{K}^{\mathbf{C}}_{\mathbf{A}} \int_{\lambda_{\mathbf{O}}}^{\lambda_{\mathbf{A}}} \frac{\mu_{\mathbf{A}}^{(\lambda)} \mathbf{I}_{\mathbf{O}}^{(\lambda)} \mathbf{I}_{\mathbf{O}}^{(\lambda)} d\lambda}{C_{\mathbf{A}}^{(\frac{\mu_{\mathbf{A}}^{(\lambda)}}{\mathrm{sen}\psi} + \frac{\mu_{\mathbf{A}}^{(\alpha)}}{\mathrm{sen}\psi} + C_{\mathbf{B}}^{(\frac{\mu_{\mathbf{B}}^{(\lambda)}}{\mathrm{sen}\psi} + \frac{\mu_{\mathbf{B}}^{(\alpha)}}{\mathrm{sen}\psi} + \dots} + \dots$$

(II-1)

onde

- q fração da radiação fluorescente que passa através do colimador em direção ao cristal analisador,
- \$\phi\$ ângulo entre a radiação incidente e a superfície da amostra,
- f_K fração da radiação fluorescente correspondente ao e<u>s</u> pectro do nível de energia K,
- W_K probabilidade da emissão da radiação fluorescente p<u>e</u> lo estado excitado do nível de energia K,
- P_{K} fração da radiação fluorescente devido à linha K,
- λ_{o} comprimento de onda mínimo do espectro da radiação incidente,
- λ_A comprimento de onda da borda de absorção(absorption edge)K do elemento A,
- $\mu_{i}(\lambda)$ coeficiente de absorção de massa do elemento i para o comprimento de onda λ_{i}
- $I_{o}(\lambda)$ intensidade primária do tubo de raios-X para o com primento de onda λ ,
- $\mu_{i}(\alpha)$ coeficiente de absorção de massa do elemento i para o comprimento de onda da radiação iK_a e

 - ângulo entre a radiação emergente e a superfície da amostra.

A intensidade fluorescente de uma amostra que contém 100% do elemento A é expressa por:

Ψ

$$I_{A100} = \frac{q}{\operatorname{sen}\psi} f_{K} W_{K} p_{K} \int_{\lambda}^{\lambda} \frac{\mu_{A}(\lambda) I_{O}(\lambda) d\lambda}{\frac{\mu_{A}(\lambda)}{\operatorname{sen}\psi} + \frac{\mu_{A}(\lambda)}{\operatorname{sen}\psi}} . \quad (II-2)$$

Relacionando-se (II-1) e (II-2) e resolvendo-se aintegral em termos do comprimento de onda efetivo $\overline{\lambda}$ ⁽³²⁾, tem-se:

$$\frac{I_{A}}{I_{A100}} = \frac{C_{A}(\frac{\mu_{A}(\overline{\lambda})}{\operatorname{sen}\psi} + \frac{\mu_{A}(\alpha)}{\operatorname{sen}\psi})}{C_{A}(\frac{\mu_{A}(\overline{\lambda})}{\operatorname{sen}\psi} + \frac{\mu_{A}(\alpha)}{\operatorname{sen}\psi}) + C_{B}(\frac{\mu_{B}(\overline{\lambda})}{\operatorname{sen}\psi} + \frac{\mu_{B}(\alpha)}{\operatorname{sen}\psi}) + \dots}$$
(II-3)

Isto é válido, considerando-se que a radiação é produzida pelo mesmo intervalo de comprimento de onda do espectro primário de raios-X.

Considerando-se que

$$\frac{\mu_{i}(\overline{\lambda})}{\operatorname{sen}\psi} + \frac{\mu_{i}(\alpha)}{\operatorname{sen}\psi} = \overline{\mu}_{i}(\alpha)$$

tem-se:

$$\frac{I_{A}}{I_{A100}} = \frac{C_{A} \overline{\mu}_{A}(\alpha)}{C_{A} \overline{\mu}_{A}(\alpha) + C_{B} \overline{\mu}_{B}(\alpha) + \dots}$$

Considerando-se ainda

 $C_{B} \overline{\mu}_{B}(\alpha) + C_{C} \overline{\mu}_{C}(\alpha) + \dots = C_{M} \overline{\mu}_{M}(\alpha)$

tem-se:

$$I_{A} = \frac{C_{A} \overline{\mu}_{A}(\alpha) I_{A100}}{C_{A} \overline{\mu}_{A}(\alpha) + C_{M} \overline{\mu}_{M}(\alpha)}$$

Como o elemento A encontra-se em concentração baixa (10⁻³ a 10⁻⁶ g) na amostra, pode-se considerar que $C_A \rightarrow 0$ e $C_M \simeq 1$, tornando-se válida a seguinte equação ⁽³⁰⁾:

$$I_{A} = \frac{C_{A} \mu_{A}(\alpha) I_{A100}}{\mu_{M}(\alpha)} .$$
 (II-3)

Desta forma, a intensidade fluorescente de um eleme<u>n</u> to presente em baixa concentração é proporcional à sua conce<u>n</u> tração, podendo-se obter uma curva de calibração inter-relaci<u>o</u> nando-as.

II.3. Efeito Matriz

O efeito matriz pode ser provocado por uma interação elementar na amostra ou mesmo por efeitos físicos, causando um erro residual sistemático nas medidas das intensidades fluore<u>s</u> centes.

Um dos efeitos que predomina nas medidas das intens<u>i</u> dades é o efeito de absorção primária e secundária de raios-X, cuja grandeza depende dos diferentes coeficientes de absorção de massa dos componentes da matriz. Pode-se recorrer ao uso de separações químicas, filtros ou mesmo correções matemáticas p<u>a</u> ra eliminar ou minimizar este efeito ^(8, 21, 22, 32).

Outro efeito que também interfere nas intensidades fluorescentes é o tamanho das partículas e a superfície rugosa das amostras (21, 32), evidenciando que a preparação das me<u>s</u> mas é um fator muito importante na técnica de análise por flu<u>o</u> rescência de raios-X. Sendo uma técnica de análise comparativa, as amostras e os padrões devem comportar-se identicamente em relação ao espectrômetro apresentando reprodutibilidade nas medidas.

Neste trabalho o efeito matriz, devido à absorção de raios-X causado quase que exclusivamente pela grande concentr<u>a</u> ção do urânio, é normalizado através da adição de uma quantid<u>a</u> de constante de urânio nos padrões, semelhante à existente nas amostras.

II.3.1. Efeito de Absorção de Massa para as Matrizes de U₃O₈ e <u>UO</u>2

A intensidade fluorescente de um elemento i, presente em baixa concentração numa matriz, é obtida pela equação(II-3).

Quando se utiliza uma matriz de U₃O₈, tem-se:

$$I_{i} = \frac{C_{i} \mu_{i}(\alpha) I_{i100}}{\mu_{U_{3}} O_{8}(\alpha)} . \qquad (II-4)$$

Do mesmo modo, quando se utiliza uma matriz de UO_2 , tem-se:

$$I'_{i} = \frac{C_{i} \mu_{i}(\alpha) I_{i100}}{\mu_{UO_{2}}(\alpha)} .$$
 (II-5)

Relacionando-se as equações (II-4) e (II-5), tem-se

$$\frac{I_{i}}{I_{i}} = \frac{{}^{\mu}UO_{2}}{{}^{\mu}U_{3}O_{8}}^{(\alpha)} = f \cdot$$
(II-6)

Onde <u>f</u> é uma constante que poderá ser determinada ex perimentalmente através da medida da intensidade fluorescente do elemento i numa matriz de U_3O_8 e UO_2 respectivamente, desde que este elemento tenha a mesma concentração nas duas matrizes.

II.4. Influência dos Parâmetros Instrumentais na Intensidade Fluorescente

II.4.1. Excitação

A primeira fase instrumental de uma análise por fluo rescência de raios-X é a excitação das linhas características dos elementos a serem analisados, devendo ser selecionado ad<u>e</u> quadamente o tubo de raios-X e a sua potência para obter-seuma boa eficiência.

II.4.1.1. Tubo de Raios-X

O tubo de raios-X gera o feixe de radiação primário que irá excitar os elétrons dos elementos presentes na amostra, produzindo assim a emissão das radiações características de c<u>a</u> da elemento.

Os tubos de raios-X comerciais apresentam um filamen to de tungstênio (catodo) onde aplica-se uma corrente para pro duzir os elétrons que são acelerados por uma diferença de po tencial em direção a um alvo (anodo), onde a energia cinética transforma-se, na sua maior parte, em calor e, somente uma p<u>e</u> quena fração, em raios-X.

Esta radiação é emitida em todas as direções e, somen te uma parte emerge pela janela do tubo de raios-X para atin gir a amostra. Esta janela geralmente é de berílio e muito f<u>i</u> na para possibilitar uma alta transmissão dos raios-X.

Para cada alvo do tubo de raios-X, tem-se um espectro contínuo, cuja distribuição da radiação pode ser expressa pela relação de Kramer ^(8, 21):

$$I(\lambda) d\lambda = K i Z \left[\frac{\lambda}{\lambda_{o}} - 1\right] \frac{1}{\lambda^{2}} d\lambda \qquad (II-7)$$

sendo

$$\lambda_{o} = \frac{h c}{e V} = \frac{12.400}{V}$$

onde

K - constante,

i - corrente aplicada ao tubo de raios-X,

Z - número atômico do alvo do tubo de raios-X,

V - voltagem aplicada ao tubo de raios-X,

- h constante de Planck,
- c velocidade da luz e
- e carga do elétron.

Na Figura 2.1 pode-se observar a distribuição da i<u>n</u> tensidade do espectro contínuo para um tubo de raios-X com a<u>l</u> vo de tungstênio submetido a 100 kV, destacando-se as posições de suas principais radiações características ⁽²¹⁾.

<u>FIGURA 2.1</u> - Espectro do Tubo de Raios-X com Alvo de Tungstênio, Destacando-se as Posições de suas Principais Radiações Característ<u>i</u> cas ⁽²¹⁾.

17.

Integrando-se a relação (II-7), obtém-se ⁽⁸⁾:

$$I = prop. i Z V^2$$

o que nos evidencia que a intensidade do espectro contínuo $d\underline{e}$ pende do número atômico do alvo do tubo de raios-X e da amper<u>a</u> gem e voltagem aplicadas.

Existem cerca de oito tipos de alvos que são usados c<u>o</u> mercialmente: W, Mo, Au, Cr, Rh, Pt, Ag e Cu, sendo que para cada elemento a ser analisado deve-se utilizar o mais conv<u>e</u> niente.

A dependência da intensidade do espectro contínuo com o alvo do tubo de raios-X pode ser observada na Figura 2.2^(8,32).

Müller (31), utilizando tubos de raios-X de tungstênio e molibdênio, verificou experimentalmente a variação da i<u>n</u> tensidade fluorescente na determinação do titânio (Z=22) até o urânio (Z=92). Este estudo pode ser observado na Figura 2.3,o<u>n</u> de os tubos de raios-X estão submetidos a 50 kV e 20 mA.

Neste exemplo, a intensidade fluorescente aumenta com o número atômico para os elementos leves (Z<39). Para os el<u>e</u> mentos de número atômico médio a pesado (39<Z<60), a intensid<u>a</u> de diminui com o número atômico, isto porque as suas bordas de absorção λ_k se aproximam rapidamente do comprimento de onda λ_o do espectro contínuo do tubo de raios-X e o número de fótons primários para o intervalo de excitação λ_o e λ_k decrescem r<u>a</u> pidamente.

Alguns requisitos básicos são exigidos para uma boa eficiência de um tubo de raios-X:

- produção suficiente de fótons para a faixa de compr<u>i</u> mento de onda requerida,
- alta estabilidade,
- capacidade de trabalho com potência razoavelmente alta. COMISSÃO NACION/L EE ENFERGIA NUCLEAR/SP - IPEN

<u>FIGURA 2.2</u> - Dependência do Espectro contínuo com o A<u>1</u> vo do Tubo de Raios- $x^{(8,32)}$. A Intensid<u>a</u> de Aumenta com o Número Atômico.

 não possuir linha do seu espectro característico que interfira nas linhas dos elementos que estão sendo determinados.

II.4.1.2. Corrente e Voltagem

A intensidade do espectro contínuo do tubo de raios-X aumenta proporcionalmente com a corrente (i) aplicada, com

o número atômico (Z) do anodo e aproximadamente com o quadrado da voltagem (V) aplicada.

$$I = \int_{0}^{\infty} I(\lambda) d\lambda = \text{prop. i } V^{2} Z$$

O aumento da corrente aplicada ao tubo de raios-X faz com que a intensidade do seu espectro contínuo aumente propo<u>r</u> cionalmente, isto porque o número de elétrons que chegam ao anodo vindo do filamento (catodo) é proporcional à corrente.

O aumento da voltagem aplicada ao tubo de raios-X faz com que o comprimento de onda mínimo do seu espectro contínuo (λ_0) e consequentemente o comprimento de onda máximo $(\lambda_{máx})$, se jam deslocados progressivamente para comprimentos de onda men<u>o</u> res.

Na Figura 2.4 pode ser observada a variação da intens<u>i</u> dade do espectro contínuo do tubo de raios-X com o aumento da voltagem aplicada ^(8, 32).

<u>FIGURA 2.4</u> - Variação do Espectro Contínuo do Tubo de Raios-X com a Voltagem Aplicada^(8,32).

A escolha da corrente é um problema menor que a esc<u>o</u> lha da voltagem porque a corrente afeta a intensidade fluore<u>s</u> cente e a radiação de fundo linearmente, enquanto que a volt<u>a</u> gem afeta as duas diferentemente.

Na Figura 2.5 pode ser observada a variação da intensi dade do espectro contínuo do tubo de raios-X com o aumento da

amperagem aplicada ^(8, 32).

<u>FIGURA 2.5</u> - Variação do Espectro Contínuo do Tubo de Raios-X com a Amperagem Aplicada^(8,32).

Ōtima corrente e voltagem são atingidas quando a rela ção entre a intensidade da radiação característica (P) e a in tensidade da radiação de fundo (Bg) tiverem um valor máximo.

Segundo Siemens ⁽³⁴⁾ são obtidas corrente e voltagem ótimas, quando a relação abaixo atingir um valor mínimo.

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP - IPEN

$$\frac{I_{Bg}}{I_{P}} = Minimo$$

Para Díaz Guerra ⁽¹³⁾ tem-se os melhores parâmetros de excitação quando a relação abaixo tiver um valor máximo.

$$\sqrt{I_{p} + I_{Bg}} - \sqrt{I_{Bg}} = Maximo$$

Nestas condições, geralmente a sensibilidade é máxima e atinge-se um limite mínimo de detecção mais baixo.

II.4.2. Colimadores

Colimadores são usados para selecionar o feixe de r<u>a</u> diação paralelo e para fornecer maior precisão ao ângulo que é formado entre a radiação emergente da amostra e o cristal analisador. Geralmente, os colimadores consistem de uma série de lâminas paralelas, de igual distância entre as mesmas.

Os colimadores mais finos fornecem um espectro energ<u>é</u> tico com melhor resolução apesar de provocarem a diminuição da intensidade fluorescente, portanto, a sua escolha é uma que<u>s</u> tão de conveniência entre uma alta resolução e baixa intensid<u>a</u> de ou baixa resolução e alta intensidade.

A resolução é também fortemente afetada pela escolha do cristal analisador. A escolha dos colimadores apropriados vai depender da região do espectro energético a ser analisado. Para regiões de comprimentos de onda maiores que 0,3 mm, gera<u>l</u> mente, utiliza-se um colimador mais grosso, visto que nesta r<u>e</u> gião os problemas provocados pela baixa intensidade são mais críticos que os de uma boa resolução.

II.4.3. Cristal Analisador

O espectro fluorescente emitido pela amostra contém linhas de diferentes comprimentos de onda. A análise desses e<u>s</u> pectros, em relação ao comprimento de onda, é realizada com o auxílio de um cristal analisador que possua parâmetro de rede bem conhecido e com um goniômetro para que possa ser medido o ângulo da radiação refletida.

O cristal analisador é posicionado para que ocorra o fenômeno de difração obedecendo a lei de Bragg:

$$n\lambda = 2d \operatorname{sen} \theta$$

onde

n - ordem de reflexão,

d - distância interplanar do cristal,

 λ - comprimento de onda da radiação incidente no cristal analisador

 θ - ângulo de difração da radiação incidente.

O cristal analisador move-se de 0° a 20 passando su cessivamente por diversos ângulos de Bragg, correspondente aos vários comprimentos de onda característicos dos elementos que se encontram presentes na amostra.

Um bom cristal analisador deve apresentar as segui<u>n</u> tes propriedades:

- faixa de comprimento de onda apropriado para a an<u>á</u>
 lise dos elementos a ser realizada,
- alta intensidade difratada,
- alta resolução apresentar raias estreitas,
- razão P/Bg alta,
- ausência de raias de elementos interferentes,
- alta estabilidade.

Entre os cristais analisadores existentes os que enco<u>n</u> tram maior uso são (8, 32):

LiF (200) - 2d = 0,4028 nm

Apresenta alta eficiência na reflexão e boa resolução. É o mais comumente utiliz<u>a</u> do para os elementos de número atômico e<u>n</u> tre Z = 20 (Ca) e Z = 92 (U).

LiF (220) - 2d = 0,2848 nm

Apresenta também boa reflexão e resolução e é usado para um grande número de eleme<u>n</u> tos.

EDDT (020) - 2d = 0,8808 nm

Apresenta boa eficiência para reflexões menores que as usadas para o LiF. É usado comumente para elementos leves, a partir de Z=13 (A1).

ADP (011) - 2d = 1,0648 nm

Tem baixa eficiência e é usado geralmente para a análise de Mg.

PE (002) - 2d = 0,8742 nm

É comparável ao EDDT, embora apresenteuma eficiência ligeiramente melhor.

A Figura 2.6 mostra a região de comprimento de onda mais usada para alguns dos cristais analisadores ^(8, 21).

II.4.4. Detectores

Dois tipos de detectores são comumente utilizados nos espectrômetros de fluorescência de raios-X convencionais, o

FIGURA 2.6 - Faixa de Comprimento de Onda Utilizada por alguns dos Cristais Analisadores^{(8,} 21)

detector proporcional de fluxo (mistura de $Ar-CH_4$) e o detector de cintilação de NaI(T1).

Os detectores devem converter a energia dos fótons em alguma forma de energia que possa ser medida.

A sensibilidade do detector proporcional de fluxo d<u>e</u> pende do comprimento de onda e, geralmente é utilizado para a faixa de 0,15 a 1,2 nm.

A amostra, o cristal analisador e o detector propo<u>r</u> cional estão normalmente em vácuo ou em atmosfera de He para reduzir a forte absorção do ar que ocorre para comprimentos de onda maiores.

Para a faixa de comprimento de onda 0,03 a 0,25 nm é mais utilizado o detector de cintilação. Este tem baixo tempo morto de resposta e a sua sensibilidade está próxima de 100% para toda a faixa em que é utilizado. Uma comparação da eficiência desses detectores é mos trada na Figura 2.7 (8).

<u>FIGURA 2.7</u> - Eficiência do Detector de Cintilação de NaI(Tl) e do Detector Proporcional de Fluxo em Função do Comprimento de O<u>n</u> da ⁽⁸⁾.

II.4.5. Analisador de Altura de Pulsos

Os pulsos eletrônicos produzidos no detector de cint<u>i</u> lação ou proporcional são amplificados e enviados ao analis<u>a</u> dor (PHA - pulse height analyzer), onde podem ser eliminadas as eventuais linhas que causam interferências.

O analisador de altura de pulsos pode operar de duas maneiras distintas, integral e diferencial. No modo integral fixa-se um valor mínimo de voltagem (linha de base), fora da região de interferência da radiação de fundo, permitindo-se a passagem de todos os pulsos acima deste nível. No modo difere<u>n</u> cial, coloca-se um nível de energia superior (janela), de tal modo que apenas são detectados os pulsos situados entre esses dois níveis de valores pré-selecionados de voltagem.

O modo diferencial é utilizado em situações onde ocor re superposição de linhas, ou seja, nos espectrômetros cujo cristal analisador não dispõe de meios para distinguir compr<u>i</u> mentos de onda λ e seus múltiplos, funcionando como um verd<u>a</u> deito discriminador de energia.

Resumidamente, as principais aplicações de um analis<u>a</u> dor de altura de pulsos são:

- eliminar as radiações interferentes,
- reduzir a radiação de fundo,
- tornar o limite mínimo de detecção mais baixo,
- aumentar a resolução nas medidas das radiações,
- aumentar a sensibilidade para comprimentos de onda maiores.
III - PARTE EXPERIMENTAL

III.1. Preparação das Amostras

III.1.1. Reagentes Utilizados

Para a preparação das amostras foram utilizados os s<u>e</u> guintes reagentes químicos:

- U_3O_8 , Fe_2O_3 , Cr_2O_3 , MnO_2 , NiO, CuO e CaCO₃ espectrográficos da J.Matthey,
- padrão espectrográfico de U₃0₈ da New Brunswick Laboratory,
- H_3BO_3 PA da Carlo Erba e
- UO₂ de pureza nuclear.

III.1.2. Procedimento

Para a preparação das amostras foi escolhido o método das pastilhas prensadas de dupla camada, utilizando-se como aglutinante o ácido bórico.

As amostras de UO₂, quando necessário, foram transfo<u>r</u> madas em U₃O₈ por um processo de calcinação (900^OC por duas h<u>o</u> ras).

As massas dos reagentes e das amostras requeridas f<u>o</u> ram pesadas em balança analítica da Mettler e homogeneizadas em almofariz de ágata durante 50 minutos.

A primeira camada da pastilha (base), que é constitu<u>í</u> da por 4,0 g de ácido bórico, foi prensada com 1,2 ton/cm² d<u>u</u> rante um minuto e a segunda camada que contém os padrões ou as amostras foi prensada com 1,6 ton/cm² durante um minuto, em prensa hidráulica modelo HTP40 da H.G.Herzog, utilizando-se de uma matriz de 40,0 mm de diâmetro.

As pastilhas, quando levadas ao espectrômetro, são colocadas em um porta amostra com base de alumínio e cobertas com uma folha de Mylar.

III.1.3. Preparação dos Padrões

Preparou-se uma série de seis (6) padrões sintéticos, partindo-se de uma quantidade fixa de U_3O_8 espectrográfico (1,0000 g), onde foram adicionadas quantidades variadas de Cr, Cu, Fe, Mn e Ni na forma de óxidos e Ca na forma de CaCO₃; completando-se todos à 2,0000 g com H_3BO_3 .

A composição desta série de padrões encontra-se na T<u>a</u> bela III.l.

Todos os padrões e amostra-branco (P-7) foram prepar<u>a</u> dos em triplicatas.

III.2. Espectrômetro de Fluorescência de Raios-X

No espectrômetro de fluorescência de raios-X, cujo e<u>s</u> quema pode ser observado na Figura 3.1, o feixe primário de raios-X incide sobre a amostra e excita os elétrons das cam<u>a</u> das internas dos elementos presentes na mesma. Quando estes elétrons retornam ao seu estado normal de energia, emitem r<u>a</u> diações características. Uma parte destas radiações passa atr<u>a</u> vés de um colimador e ao incidir no cristal analisador sofre difração obedecendo a lei de Bragg.

A radiação que é refletida no cristal analisador é a<u>b</u> sorvida pelo detector que está posicionado no ângulo 20 que é característico para cada elemento. Esta radiação é então tran<u>s</u> formada em sinais que são registrados numericamente ou grafic<u>a</u> mente.

	P-1	P-2	P-3	P-4	P-5	P-6	P-7
Ca	0,0150	0,0100	0,0050	0,0025	0,0010	0,0016	
Cr	0,0150	0,0100	0,0051	0,0025	0,0010	0,0015	
Cu	0,0014	0,0010	0,0025	0,0049	0,0074	0,0098	-
Fe	0,0149	0,0100	0,0050	0,0025	0,0010	0,0015	-
Mn	0,0013	0,0010	0,0025	0,0050	0,0074	0,0100	-
Ni	0,0155	0,01.04	0,0055	0,0025	0,0010	0,0015	-
U308	50,0	50,0	50,0	50,0	50,0	50,0	50,0

TABELA III.1 - Composição dos Padrões (%).

O espectrômetro utilizado foi o modelo semi automát<u>i</u> co da Rigaku Denki Co. Ltd., com gerador Geigerflex e goniôm<u>e</u> tro que fornece as posições de Bragg com 0,01⁰ de precisão.

III.3. <u>Comportamento das Radiações Características K_α de Pri</u> meira Ordem dos Elementos Estudados

As radiações características K_{α} (n=1) dos elementos es tudados sofrem forte absorção devido à alta concentração e o grande coeficiente de absorção de massa do urânio presente na matriz.

Como este efeito só poderia ser eliminado com separação química, procurou-se compensá-lo, trabalhando-se com uma qua<u>n</u> tidade de urânio praticamente constante nas amostras e padrões.

COMISSÃO NACIONIL DE ENERGIA NUCLEAR/SP - IPEN

. .

Na Figura 3.2. são apresentados os valores dos coef<u>i</u> cientes de absorção de massa para o urânio em função do compr<u>i</u> mento de onda ⁽²⁷⁾, juntamente com o comprimento de onda da radiação característica do Ca (λ =0,3360 nm), Cr (λ =0,2291 nm), Cu (λ =0,1542 nm), Fe (λ =0,1937 nm), Mn (λ =0,2103 nm) e Ni (λ =0,1659 nm) procurando-se dar uma idéia do efeito de a<u>b</u> sorção nestas radiações pelo urânio.

As radiações características K_{α} (n=1) dos elementos es tudados encontram-se na região compreendida entre 0,14-0,34 nm do espectro energético, obtido com tubo de raios-X de W, como pode ser observado na Figura 3.3. Como estes elementos possuem número atômico muito próximos, a diferença entre os comprimen tos de onda das radiações características K_{α} e K_{β} , para Z e Z-1 respectivamente, são pequenas e poderiam causar interferên cias, o que praticamente não é observado no nosso caso, devido as suas baixas concentrações e intensidades relativas das ra diações K_{β} e, ainda às condições impostas ao analisador de pu<u>l</u> sos, que elimina possíveis interferências.

Através de uma varredura passo a passo ao redor de c<u>a</u> da uma das posições 20 das radiações características, CaK_{α} (F<u>i</u> gura 3.4), CrK_{α} (Figura 3.4), CuK_{α} (Figura 3.5), FeK_{α} (Figura 3,5), MnK_{α}(Figura 3.6) e NiK_{α} (Figura 3.6), determinaram -se duas pos<u>i</u> ções, uma à direita e outra à esquerda de cada pico, para que pudesse ser calculada a radiação de fundo na posição do pico.

Na Tabela III.2 estão relacionados os ângulos de Bragg para a determinação das intensidades das radiações característ<u>i</u> cas $(2\theta_2)$ dos elementos estudados e as respectivas posições 2θ , à direita $(2\theta_3)$ e à esquerda $(2\theta_1)$ de cada pico, para a determ<u>i</u> nação da radiação de fundo.

FIGURA 3.2 - Coeficiente de Absorção de Massa para o Urânio em Função do Comprimento de Onda. Destacando-se as Posições das Radiações Características K_α(n=1) do Ca, Cr, Cu, Fe, Mn e Ni.

Região entre 0,14 - 0,34 nm.

<u>FIGURA 3.4</u> - Perfis de Varredura Passo a Passo para as Radiações CaK $_{\alpha}$ (n=1) e CrK $_{\alpha}$ (n=1) em Função do Ângulo de Bragg.

		Ângulo de Bragg	
Elementos -	²⁰ 1	²⁰ 2	² ⁰ 3
Ca	43,35 ⁰	44,85 ⁰	45,52 ⁰
Cr	68,90 ⁰	69,38 ⁰	69,86 ⁰
Cu	44,70 ⁰	45,03 ⁰	45,50 ⁰
Fe	57,00 ⁰	57,53 ⁰	58,06 ⁰
Mn	62,65 ⁰	63,00 ⁰	63,40 ⁰
Ni	48,30 ⁰	48,68 ⁰	49,06 ⁰

<u>TABELA III.2</u> - Posições do Ângulo de Bragg Determ<u>i</u> nadas para as Medidas das Radiações K_a(n=1) e Radiação de Fundo.

III.4. Estabelecimento das Condições de Operação para o Espec trômetro de Fluorescência de Raios-X

Para estabelecer as condições de operação mais favor<u>á</u> veis para o espectrômetro de fluorescência de raios-X, de modo que fosse obtido um limite mínimo de detecção mais baixo po<u>s</u> sível, estudou-se a influência de algumas variáveis que podem influir na sensibilidade, levando-se em conta o intervalo de concentração utilizado.

III.4.1. Condições para a Excitação

Para a seleção dos parâmetros de excitação para as ra diações características K_{α} de primeira ordem do Cr, Cu, Fe, Mn e Ni utilizou-se um tubo de tungstênio, variando-se a tensão aplicada entre 30 e 50 kV e a corrente entre 20 e 50 mA, de m<u>o</u> do que em nenhuma das combinações a potência aplicada excede<u>s</u> se a 2700 W.

Para o Ca, devido a interferência da radiação WL_{l} (n=2), utilizou-se um tubo de cromo, variando-se a tensão entre 30 e 50 kV e a corrente entre 20 e 35 mA, de modo que em nenhuma das combinações a potência aplicada excedesse a 2000 W.

As medidas das intensidades das radiações característ<u>i</u> cas foram realizadas com um colimador de 450 µm, cristal anal<u>i</u> sador de LiF (200) (com exceção do Ca em que foi utilizado o EDDT) e tempo fixo de contagem de 100 segundos.

Na verificação da sensibilidade para algumas das con dições, utilizou-se alguns critérios: intensidade líquida de pico (P); intensidade da radiação de fundo (Bg); relação entre intensidade de pico e radiação de fundo (P/Bg); diferença en tre as raizes quadradas da intensidade de pico mais a da radia ção de fundo e a intensidade da radiação de fundo ($VP + Bg - \sqrt{Bg}$) e relação entre a raiz da radiação de fundo e a intensidade de pico (\sqrt{Bg}/P), uma vez que a raiz quadrada da radiação de fundo é mais significativa quando trata-se de concentrações ba<u>i</u> xas.

Os valores calculados para estes fatores encontram-se na Tabela III.3, na qual através de um exame, permitem compr<u>o</u> var que as condições de excitação mais favoráveis são obtidas principalmente com o aumento da tensão aplicada.

Neste estudo não foram aplicadas tensões e correntes superiores a 50 kV e 50 mA para não diminuir a vida útil do tubo de raios-X. Em vista disto, utilizou-se para os elementos Cr , Cu, Fe, Mn e Ni uma tensão de 50 kV e uma amperagem de 50 mA e para o Ca 50 kV e 35 mA.

TABELA III.3 - Influência dos Parâmetros de Excitação nos Valores das 2 ρ

Sensibilidade.
g
para
Expressoes
iversas

kv/mA	P (c/100s)	Bg (c/100s)	₽/Bg	(10 ³)	/P+Bg - / Bg	Sensibilidade (c.s ⁻¹ /%)	Limite de Detecção (µg/gU ₃ 0 ₈)
	111 156	27 816	4,00	1,50	206,0	37 052	7,6
	128 540	32 702	3,93	1,41	220,7	42 847	7,2
	127 437	32 160	3,96	1,41	220,2	42 479	7,2
	147 979	37 843	3,91	1,31	236,5	49 326	6,5
	144 257	36 059	4,00	1,32	234,7	48 086	6,7
1	168 610	42 575	3,96	1,22	253,2	56 203	6,2
	12 783	1 700	7,52	3,22	19,1	2 000	8,7
	13 048	1 672	7,80	3,13	80,4	2 042	8,5
	15 046	1 927	7,81	2,92	86,4	2 355	6.7
	13 950	1 714	8,14	2,97	83,8	2 183	8,0
	14 887	1 920	7,75	2,94	85,8	2 330	8,0
	16 878	2 018	8,36	2,66	92,6	2 436	7,8

TABELA III.3 - Influência dos Parâmetros de Excitação nos Valores das

.

Diversas Expressões para a Sensibilidade.

(cont.)

Radiação	kV/mA	P (c/100s)	Bg (c/100s)	P/Bg	VBq_/P (10 ^{−3})	/ <u>P+Bg</u> - / Bg	Sensibilidade (c.s ⁻¹ /%)	Limite de Detecção (µg/gU ₃ 0 ₈)
	40/50	36 713	17 768	2,07	3,63	100,1	6 486	8,7
	45/45	37 232	18 627	2,00	3,67	8,99	6 578	8,8
CuK	45/50	41 897	20 422	2,05	3,41	106,7	7 402	8,2
(n=1)	50/40	39 163	18 702	2,09	3,49	103,8	6 1 6	8,4
	50/45	42 587	20 302	2,10	3,35	108,3	7 524	8,0
	50/50	47 844	22 883	2,09	3,16	114,6	8 453	7,6
	40/50	34 007	4 409	7,71	1,95	129,6	4 628	6,1
	45/45	35 238	4 437	7,94	1,85	132,6	4 794	5,9
FeK	45/50	38 914	5 028	7,74	1,82	138,7	5 294	5,7
(n=1)	50/40	35 483	4 452	76,7	1,88	133,1	4 828	5,9
	50/45	39 132	4 815	8,13	1,77	140,2	5 324	5,5
	50/50	43 589	5 333	8,17	1,68	148,2	5 930	5,2

TABELA III.3 - Influência dos Parâmetros de Excitação nos Valores das

Diversas Expressões para a Sensibilidade.

(cont.)

								Limite de
Radiação	kV/mÀ	P (c/100s)	Bg (c/100s)	P/Bg	√Bg (10 ⁻³)	/PHBg - / Bg	Sensibilidade (c.s ⁻¹ /%)	Detecção (μg/gŪ ₃ 0 ₈)
	40/50	12 060	2 746	4,39	4,35	69,3	1 455	15,3
	45/45	12 101	2 729	4,43	4,32	69,6	1 420	15,6
MnK	45/50	13 471	3 110	4,33	4,14	73,0	1 581	15,0
(n=1)	50/40	12 441	2 876	4,33	4,31	70,2	1 460	15,6
	50/45	13 612	3 030	4,49	4,04	73,9	1 598	14,6
	50/50	15 121	3 378	4,48	3,84	6,77	1 775	13,9
I	40/50	45 555	11 291	4,03	2,33	132,1	7 787	5,8
	45/45	46 628	11 294	4,13	2,28	134,4	1797	5,7
NIK	45/50	52 426	12 866	4,07	2,16	142,0	8 962	5,4
(n=1)	50/40	48 422	11 313	4,28	2,20	138,0	8 277	5,5
	50/45	53 127	12 304	4,32	2,09	144,9	9 082	5,2
	50/50	59 287	14 068	4,21	2,00	152,2	10 135	5,0

III.4.2. Colimador, Cristal Analisador, Detector e Tempo Fi xo de Contagem

As medidas das intensidades das radiações caracterís ticas do Cr, Cu, Fe, Mn e Ni foram realizadas com colimador de 150 μ m, cristal analisador de LiF (200) e detector de cintil<u>a</u> ção de NaI(T1), que são muito sensíveis para a determinação de quantidades da ordem de microgramas. Para o Ca utilizou-se um colimador de 450 μ m, cristal analisador de EDDT (020) e dete<u>c</u> tor proporcional de fluxo com uma mistura P-10 (argônio com 10% de metano).

Todas as medidas foram realizadas com a amostra em v \underline{a} cuo (~ 0,15 atm).

O tempo fixo de contagem foi de 100 segundos para o Ca, Cu, Fe e Ni, 200 segundos para o Cr e 400 segundos para o Mn.

Na Tabela III.4 encontram-se as condições mais fav<u>o</u> ráveis estabelecidas para o espectrômetro de fluorescência de raios-X, tais como: tubo de raios-X, excitação, ângulo de Bragg, colimador, cristal analisador, detector e tempo fixo de cont<u>a</u> gem para a determinação dos elementos estudados.

III.4.3. Analisador de Pulsos

Os pulsos eletrônicos produzidos no detector de cint<u>i</u> lação ou proporcional são amplificados através da tensão que é aplicada e do ganho do detector.

Estes pulsos após serem amplificados são enviados ao analisador de pulsos (PHA, pulse height analyzer), que funcio na como um discriminador de energia, eliminando as radiações interferentes.

TABELA III.4 - Condições Experimentais Estabelecidas para O Es pectrômetro de Fluorescência de Raios-X.

Radiaçã (n=1)	ão	CaKa	CrK _a	CuKa	FeKa	MnK _a	NiK a
(10 ⁻¹ ni	n)	3,360	2,291	1,542	1,937	2,103	1,659
Ângulo	Pico	44,85 ⁰	69,38 ⁰	45,03 ⁰	57,53 ⁰	63,00 ⁰	48,68 ⁰
de . Bragg	Bg	43,35 ⁰ 45,52 ⁰	68,90 ⁰ 69,86 ⁰	44,70 ⁰ 45,50 ⁰	57,00 ⁰ 58,06 ⁰	62,65 ⁰ 63,40 ⁰	48,30 ⁰ 49,06 ⁰
Tubo de Rai kV/mA	ios-X	Cr 50/35	W 50/50	₩ 50/50	W 50/50	W 50/50	W 50/50
Tempo Fixo Contagem (;	de s)	100	200	100	100	400	100
Colimador	(µm)	450	150	150	150	150	150
Cristal Analisador		EDDT (020)	LiF (200)	LiF (200)	LiF (200)	LiF (200)	LiF (200)
Detector		prop. de fluxo	cint.	cint.	cint.	cint.	cint.

Para a determinação da linha de base (BL) e abertura de janela (CW) para o PHA, fixou-se uma janela (1,00 V) e v<u>a</u> riou-se a linha de base, como pode ser observado nos gráficos apr<u>e</u> sentados para a radiação característica do CaK_{α} (Figura 3.7), CrK_{α} (Figura 3.7), CuK_{α} (Figura 3.8), FeK_{$\alpha}$ (Figura 3.8), MnK_{α} (F<u>i</u> gura 3.9) e NiK_{α} (Figura 3.9).</sub>

Destes gráficos foram escolhidos alguns valores de BL e CW (Tabela III.5) para os quais foram determinadas as inte<u>n</u> sidades das radiações características dos elementos estudados.

Através da relação \sqrt{Bg}/P , que deve apresentar um v<u>a</u> lor mínimo, determinou-se os melhores pares BL e CW (Tabela III.6), observando-se que estes valores encontram-se um pouco abaixo da meia altura do pico, onde teoricamente seria a pos<u>i</u> ção para a otimização.

III.5. <u>Verificação do Efeito Matriz no UO₂ e U₃O₈-</u>

Preparou-se uma série de cinco (5) amostras com m<u>a</u> triz de UO₂ e uma série de cinco (5) amostras com matriz de U_3O_8 , ambas contendo a mesma concentração dos elementos est<u>u</u> dados.

Para a preparação destas amostras, partiu-se de 1,0000 g de UO₂ ou U₃O₈ e adicionou-se 0,100 mg de Ca, Cr, Cu, Fe, Mn e Ni e completou-se a 2,0000 com H_3BO_3 .

As intensidades das radiações características K_α(n=1) obtidas encontram-se na Tabela III.7.

A constante <u>f</u>, segundo a relação II-6 deduzida na parte II.3.1, foi calculada para cada elemento e os seus val<u>o</u> res encontram-se na Tabela III.8.

da Linha de Base.

Linha de Base.

FIGURA 3.9 - Variação da Intensidade Fluorescente MnK $_{\alpha}$ (n=1) e NiK $_{\alpha}$ (n=1)em Função da

Radiação (n=1)	BL (V)	Cw (V)	P (c/100s)	Bg (c/100s)	$\sqrt{\frac{Bg}{Bg}}$ /P (10 ⁻³)	
	0,95	0,40	27 958	4 947	2,52	
	0,90	0,55	31 166	5 847	2,45	
CaKa	0,85	0,70	31 626	5 936	2,44	
	0,80	0,85	33 958	6 702	2,41	
	0,75	0,90	35 188	7 619	2,48	_
а.	0,70	0,55	9 772	1 111	3,34	
	0,65	0,65	10 893	1 313	3,33	
CrKa	0,60	0,75	11 054	1 333	3,30	
	0,55	0,85	11 869	1 505	3,27	
	0,50	1,00	12 299	1 711	3,36	
	0,80	0,50	20 118	17 467	6,57	
Gar	0,75	0,65	21 641	19 405	6,44	
α	0,70	0,85	23 245	21 615	6,32	
	0,65	1,05	23 852	22 852	6,30	
	0,60	1,15	24 938	25 965	6,46	

TABELA III.5 - Otimização da Linha de Base (BL) e Abertura de Janela (CW) para o Analisador de Pulsos.

TABELA III.5 - Otimização da Linha de Base (BL) e Abertura de Janela (CW) para o Analisador de Pulsos.

3					
Radiação (n=1)	BL (∀)	CW (V)	P (c/100s)	Bg (c/100s)	$\frac{\sqrt{Bg}}{(10^{-3})}$
· · ·	0,75	0,50	7 940	2 726	6,58
	0,70	0,65	9 004	3 225	6,31
FeKa	0,65	0,80	9 445	3 49 9	6,26
	0,60	0,95	10 507	4 130	6,12
	0,55	1,00	10 745	4 819	6,46
	0,80	0,50	10 028	2 005	4,47
	0,75	0,65	11 691	2 643	4,40
MnKa	0,70	0,80	13 435	3 104	4,15
	0,60	0,95	14 109	3 328	4,09
	0,55	1,00	14 558	3 909	4,30
	0,80	0,45	38 973	10 034	2,57
	0,75	0,55	44 538	11 742	2,43
Nika	0,70	0,70	50 879	14 214	2,34
	0,65	0,90	56 954	17 908	2,34
	0,60	1,05	58 555	20 212	2,43

(continuação)

Elementos	Linha de Base (BL)	Abertura de Janela (CW)
Ca	0,80 V	0,85 V
Cr	0,55 V	0,85 V
Cu	0,65 V	1,05 V
Fe	0,60 V	0,95 V
Mn	0,60 V	0,95 V
Ni	0,65 V	0,90 V

TABELA III.6 - Condições Estabelecidas para o Analisador de Pulsos.

_

Amostra	CrK _a cont/200s	CuK _a cont/100s	FeK_{α} cont/100s	MnK _a cont/400s	NiK _a cont/100s
U ₃ 0 ₈ -1	6 653±73	12 126±184	13 436±116	12 427±111	13 911±129
U ₃ 0 ₈ −2	6 788±86	12 228±239	13 777±216	12 224±111	13 227±161
U ₃ 0 ₈ -3	6 701±99	12 458±198	13 663±151	12 819±113	13 196±127
U ₃ 0 ₈ -4	6 693±36	11 725 ±155	13 875±184	11 886±109	13 812±99 ·
U ₃ 0 ₈ -5	6 576±64	12 181±120	13 420±92	12 031±110	14 020±148
U ₃ 0 ₈ média	6 682±72	12 144±179	13 634±152	12 277±111	13 635±133
^{UO} 2 ⁻¹	6 809±81	12 085±106	13 962±121	ll 465±107	14 090±128
00 ₂ -2	6 710±124	11 825±196	13 681±151	12 258±111	13 329±57
UO ₂ -3	6 745±104	12 176±147	13 757±145	11 832±109	14 122±97
002-4	6 643±53	11 975±124	13 823±145	12 140±110	13 462±110
U0 ₂ -5	6 667±60	12 445±157	13 515± 216	12 241±111	13 932±114
UO ₂ média	6 715±84	12 101±146	13 748±156	11 987±110	13 787±101

TABELA III.7 - Intensidade das Radiações Caracterís ticas na Matriz de UO₂ e U_3O_8

TABELA III.8 - Valores Obtidos para a Constante <u>f</u>

Radiação	f
CrK _α	1,00 ± 0,02
CuKa	1,00 ± 0,02
FeKa	0,99 ± 0,02
MnKa	1,02 ± 0,01
NiKa	0,99 ± 0,01

O valor experimental médio encontrado para a constan te <u>f</u> foi 1,00 \pm 0,02, deste modo pode-se afirmar que as duas matrizes apresentam efeito de absorção semelhante.

IV - RESULTADOS EXPERIMENTAIS E TRATAMENTO ESTATÍSTICO

IV.1. Determinação das Curvas de Calibração

A radiação de fundo correspondente à posição angular da radiação característica de cada elemento foi deduzida a partir das intensidades medidas à direita e à esquerda do pico.

A intensidade líquida de cada radiação característica foi obtida pela diferença entre a média das contagens no pico e a média das contagens da radiação de fundo, subtraindo - se ainda as contagens residuais obtidas na pastilha branco.

As flutuações nas contagens foram corrigidas, quando necessário, por meio de uma pastilha que permaneceu num dos compartimentos do porta amostra durante todo o período de anál<u>i</u> se.

O desvio padrão da intensidade líquida foi obtido atr<u>a</u> vés da lei de propagação de erros (6, 32).

Os valores obtidos para a radiação de fundo, radiação característica líquida e média, juntamente com as concentr<u>a</u> ções dos padrões para os elementos Ca, Cr, Cu, Fe, Mn e Ni são apresentados nas Tabelas IV.1 a IV.6 respectivamente.

As curvas de calibração foram obtidas inter - relaci<u>o</u> nando a intensidade líquida com a concentração do elemento em questão, como pode ser observado para o Ca, Cr, Cu, Fe, Mn e Ni nas Figuras 4.1 a 4.3.

Os parâmetros <u>a</u> e <u>b</u> das curvas de calibração:

I = a + b.C

Padrões	Intens.da Rad.de Fundo(cont/100s)	Intens. Liq. CaK _{α} (n=1) (cont/100s)	Intens.Méd CaK _a (n=1) (cont/100s)	[Ca] (%)
P-1-A	46 349±136	25 836±573		₩ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u> ₩₩₩₩₩₩₩
P-1-B	46 255±105	25 985±450	25 970±503	0,0150
P-1-C	45 957±191	26 089±486		
P-2-A	45 923±152	18 030±576	.	
Р-2-В	45 416±155	18 436±436	18 197±512	0,0100
P-2-C	46 328±192	18 124±525		
P-3-A	45 034±190	8 583±588		
Р-3-В	45 087±192	8 957±458	8 766±530	0,0050
P-3-C	45 671±109	8 759±543		
P-4-A	45 567±191	4 205±583		
P-4-B	45 710±122	4 141±546	4 121±523	0,0025
P-4-C	45 952±140	4 017±441		
P-5-A	45 183±177	1 590±448		
P-5-B	45 700±114	1 631±502	1 624±503	0,0010
P-5-C	46 031±152	1 651±558		
P-6-A	46 475±152	2 840±559		
Р-6-В	45 782±154	2 981±505	2 802±537	0,0016
P-6-C	45 937±130	2 585±548		

<u>TABELA IV.1</u> - Valores Obtidos para as Intensidades da Radiação Característica do Cálcio nos Padrões.

* Foi desprezado.

Padrões	Intens.da Rad.de Fundo(cont/200s)	Intens. Liq. CrK _a (n=1) (cont/200s)	Intens. Méd. CrK _a (n=1) (cont/200s)	[Cr] (%)
P-1-A	2 872±48	6 292±106		
P-1-B	2 904±43	6 281±122	6 302 ±109	0,0150
P-1-C	2 845±44	6 334±100		
P-2-A	2 839±30	4 109±79		
Р-2-В	2 857±18	4 135±81	4 141±86	0,0100
P-2-C	2 899±24	4 179±98		
P-3-A	2 835±13	1 927±95		
P-3-B	2 768±12	2 125±119	2 101±111	0,0051
P-3-C	2 880±50	2 251±119		
P-4-A	2 814±48	1 205±133		
P-4-B	2 833±37	1 150±127	l 179±124	0,0025
P-4-C	2 939±52	1 181±112		
P-5-A	2 780±35	399±93		
P-5-B	2 877±31	465±92	439±89	0,0010
P-5-C	2 819±19	453±82		
P-6-A	2 837±54	682±112		
P-6-B	2 770±44	768±97	7 54 ± 104	0,0015
P-6-C	2 826±44	813±104		

TABELA IV.2 - Valores Obtidos para as Intensidades da Radiação Característica do Cromo nos Padrões.

Padrões	Inten.da Rad.de Fundo(cont/100s)	Intens. Líq. CuK _a (n=1) (cont/100s)	Intens. Méd. CuK _a (n=1) (cont/100s)	[Cu] (%)
P-1-A	27 310±145	1 258±269		
Р-1-В	27 235±141	1 292±362	1 350±342	0,0014
P-1-C	27 698±112	1 502±395		
P-2-A	27 459±80	915±269		
Р-2-В	26 878±43	890±315	921±293	0,0010
P-2-C	27 224±162	958±269		
P-3-A	27 126±53	3 001±337		
Р-3-В	27 356±131	2 683±344	2 584±361	0,0025
P-3-C	26 942±164	2 484±402		
P-4-A	27 784±180	5 536±386		
Р-4-В	27 759±56	5 267±342	5 374±367	0,0049
P-4-C	27 129±117	5 319±371		
P-5-A	26 988±98	7 627±363		
P-5-B	27 571±136	7 576±337	7 602±339	0,0074
₽ - 5-C	27 843±175	7 602±317		
P-6-A	27 689±154	10 149±381		
P-6-B	27 832±172	10 539±420	10 247±393	0,0098
P-6-C	27 231±130	10 052±378		

TABELA IV.3- Valores Obtidos para as Intensidadesda Radiação Característica do Cobrenos Padrões.

TABELA	IV.4	÷	Valores	Obt	idos	para	as	Int	ens	idades
			da Radi	ação	Cara	acter	ĺsti	lca	do	Ferro
			nos Pad	rões	•					

	nc	s Padrões.		
Padrões	Intens.da Rad.de Fundo (cont/100s)	Intens.Liq. FeK _{α} (n=1)	Intens. Méd. FeK _a (n=1)	[F
-		(cont/100s)	(cont/100s)	(
P-1-A	4 512±47	10 130±161		
P-1-B	4 541±50	10 156±148	10 173±143	0.0
P-1-C	4 625±30	10 232 ±121		- • -
P-2-A	4 377±34	6 656±125		
Р-2-В	4 341±57	6 771±130	6 704±133	0,0
P-2-C	4 494±52	6 701±145		
P-3-A	4 380±64	3 433±252		
Р-3-В	4 467±42	3 361±125	3 391±178	0,0
P-3-C	4 416±31	3 379±156		
P-4-A	4 492±31	1 721±168		
P-4-B	4 569±31	1 601±116	1 705±135	0,0
P-4-C	4 509±31	1 793±121		
P-5-A	4 386±41	635±104		
P-5-B	4 499±37	684±124	700±123	0,0
P-5-C	4 501±64	781±141		
P-6-A	4 549±44	1 135±115		
P-6-B	4 417±36	1 076±162	l 107±130	0,0
P-6-C	4 629±33	1 109±112		

TABELA	IV.5	••••	Valores	5 (Obtidos	para	as	Intens	idades	da
			Radiaçã	ío	Carac	teris	stic	ca do	Mangar	nês
			nos Pad	lrð	ões.					

Padrões	Intens.da Rad.de Fundo(cont/400s)	Intens. Liq. MnK _a (n=1) (cont/400s)	Intens. Méd. MnK _a (n=1) (cont/400s)	[Mn] (%)
P-1-A	11 198±106	1 921±165		
Р-1-В	11 070±41	1 841±131	1 896±152	0,0013
P-1-C	11 848±95	1 927±160		
P-2-A	11 203±105	1 375±141		
Р-2-В	11 429±108	1 395±121	1 380±128	0,0010
P-2-C	11 452±61	1 370±121		
P-3-A	10 630±21	3 655±54		
Р-3-В	11 140±98	3 663±132	3 829±89	0,0025
P-3-C	11 147±106	4 169±82		
P-4-A	ll 176±104	7 758±147		
Р-4-В	11 351±107	7 335±180	7 517±143	0,0050
P-4-C	11 207±67	7 458±101		
P-5-A	11 258±105	11 599±148		
P-5-B	ll 555±104	11 324 ±118	11 368±128	0,0074
P-5-C	11 258±106	11 182 ±117		
P-6-A	10 930±104	15 016±128		
Р-6-В	11 860±109	15 269±153	15 017±137	0,0100
P-6-C	10 954±105	14 767±130		

,

60

COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP - IPEN

Padrões	Intens.da Rad.de Fundo(cont/100s)	Intens.da Rad.deIntens. Liq.Fundo(cont/100s)NiK $_{\alpha}$ (n=1) (cont/100s)		[Ni] (%)
P-1-A	13 170±82	22 990±282		
P-1-B	13 402±90	23 512±249	23 172±264	0,0155
P-1-C	13 041±33	23 013±261		
P-2-A	13 216±114	15 437±291		
P-2-B	12 892±109	15 070±286	15 557±275	0,0104
P-2-C	13 200±93	16 165±249		
P-3-A	13 184±75	7 836±217		
P-3-B	12 664±66	7 641±243	7 763±226	0,0052
P-3-C	12 774±142	7 811±217		
P-4-A	12 969±113	4 115±266		
P-4-B	12 821±75	3 775±255	3 942±255	0,0025
P-4-C	13 081±81	3 951±245		
P-5-A	12 903±114	1 347±255		
P-5-B	12 918±105	1 557±240	1 523±243	0,0010
P-5-C	l2 911±95	1 665±235		
P-6-A	12 965±85	2 202±244		
P-6-B	12 233±49	2 028±209	2 150±233	0,0015
P-6-C	12 732±113	2 221±247		

,

TABELA IV.6 - Valores Obtidos para as Intensidades da Radiação Característica do Níquel nos Padrões.

em Função da Concentração.

FIGURA 4.2 - Curvas de Calibração para o Cobre e Ferro - Intensidade Fluorescente

onde

I = Intensidade líquida da radiação característica,

C = Concentração do elemento em questão,

foram deduzidos através do ajuste das mesmas, pelo Método dos Mínimos Quadrados ⁽⁶⁾, e encontram-se relacionados na Tabela IV.7, juntamente com os valores obtidos para o coeficiente de correlação.

<u>TABELA IV.7</u> - Parâmetros Obtidos para as Curvas de Calibração.

-	Elemento	a	b	Coef.de Correlação
	Ca	-66 ± 85	174 ±1	0,9999
	Cr	76 ± 46	41,2±0,6	0,9996
	Cu	-65 ± 112	105 ±2	0,9993
	Fe	27 ± 40	67,7±0,5	0,9998
	Mn	-56 ± 87	152 ±2	0,9998
	Ni	37 ± 67	149,3±0,8	0,9999

IV.2. Testes Estatísticos Aplicados às Curvas de Calibração

A linearidade dos resultados obtidos foi verificada pela relação

$$F = \frac{s_{I}^{2}}{s_{R}^{2}}$$

onde:

 s_{I}^{2} = variância que caracteriza a reprodutibilidade do m<u>é</u> todo,

 s_R^2 = variância correspondente à dispersão dos valores m<u>é</u> dios de I₁ em relação à linha de regressão.

Se o valor experimental de <u>F</u> for menor que o valor t<u>a</u> belado, para um nivel de significância desejado, pode-se afi<u>r</u> mar que hā linearidade nos resultados obtidos ^(6, 33).

Os valores obtidos para s_{I}^{2} , s_{R}^{2} , <u>F</u> calculado e <u>F</u> tab<u>e</u> lado ⁽³³⁾ encontram-se na Tabela IV.8.

Para a comparação dos parâmetros <u>a</u> e <u>b</u> da reta com valores esperados, foi construída uma curva tendo nas abcissas os resultados esperados e nas ordenadas os resultados exper<u>i</u> mentais. Nestas condições, a equação da reta deve ser y=x, i<u>s</u> to \tilde{e} , devemos ter a=0 e b=1.

Para cada elemento foi determinada a equação da reta, calculado s_o, s_a e s_b (Tabela IV.9) e aplicado o teste <u>t</u> para <u>a</u> e <u>b</u>:

$$t_{a} = \begin{vmatrix} a - 0 \\ s_{a} \end{vmatrix} \qquad t_{b} = \begin{vmatrix} b - 1 \\ s_{b} \end{vmatrix}$$

Se os valores encontrados para $t_a e t_b$ forem menores que os de <u>t</u> tabelado para um nível de significância desejado , admite-se que há linearidade e ausência de erro sistemático.

IV.3. Precisão e Exatidão do Método Proposto

Para a análise da precisão e exatidão do método pr<u>o</u> posto preparou-se dez (10) amostras contendo 1,0000 g do p<u>a</u> drão 95-2 de U₃O₈ de New Brunswick Laboratory of New Jersey (USA) e 1,0000 g de H_3BO_3 . As intensidades das radiações características do Cr, Cu, Fe, Mn e Ni (média de três medidas) e as suas concentr<u>a</u> ções determinadas, encontram-se nas Tabelas IV.10 a IV.14 re<u>s</u> pectivamente.

O elemento Ca não foi determinado neste padrão devido à sua concentração estar no limite mínimo de detecção.

Na Tabela IV.15 são apresentados os valores para as concentrações determinadas e nominais do padrão 95-2, a prec<u>i</u> são em termos de variação percentual e a exatidão em termos do desvio relativo percentual, para o Cr, Cu, Fe, Mn e Ni.

 Elemento	s ² I	s _R ²	^F cal.	F [*] (33) Ftab.
Ca	20 314	56 122	2,8	3,7
Cr	5 800	16 673	2,9	3,3
Cu	33 825	76 517	2,3	3,3
Fe	3 903	12 680	3,2	3,3
Mn	40 748	48 995	1,2	3,3
Ni	35 365	47 154	3,1	3,3

<u>TABELA IV.8</u> - Verificação da Linearidade dos Resu<u>l</u> tados Obtidos

^{*}F0,05 (3,10) ^{para o Ca}

F0,05 (4, 12) para o Cr, Cu, Fe, Mn e Ni

TABELA IV.9 - Comparação dos Parâmetros <u>a</u> e <u>b</u> da Reta com Valores Esperados

El canonto	a	2	τ	C	, c	+	+	* (33)
Ontellett	d	a .	^o	ወ	م م	ŋ	٦	' tab.
පී	0,235	666'0	0,96	0,6	0,008	0,39	60'0	3,18
ප්	-0,011	1,000	1,73	1,1	0,014	10,01	0,01	2,78
õ	-0,353	1,008	1,70	1,2	0,022	0,30	0,36	2,78
Fe	0,145	1,000	0,84	0,5	0,007	0,28	0,06	2,78
Mîn	0,076	0,998	1,00	0,7	0,012	0,11	0,14	2,78
Nİ	-0,036	1,001	0,71	0,4	0,005	0,08	0,11	2,78
*	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	4		1	4 ! 4			

Para o Ca $t_{tab.} = t_{0,05(3)}$, para os outros elementos $t_{tab.} = t_{0,05(4)}$

TABELA IV.10 - Concentração de Cromo Determinada

no Padrão 95-2

Amostra	Intens Liq. (cont/200s)	Diluição da Amostra(%)	[Cr] (µg/gU)
95-2-1	855 ± 116	50,0005	44,6
95-2-2	772 ± 103	50,0005	39,9
95-2-3	808 ± 118	49,9995	41,9
95-2-4	764 ± 138	49,9995	39,4
95-2-5	724 ± 113	50,0010	37,1
95-2-6	789 ± 107	49,9993	40,8
95-2-7	770 ± 101	49,9995	39,8
95-2-8	825 ± 121	49,9995	42,9
95-2-9	766 ± 114	49,9990	39,5
95-2-10	794 ± 132	50,0000	41,1

Concentração de Cromo determinada no padrão:

.

 $[Cr] = 41 \pm 2 \mu g/gU.$

TABELA IV.11 - Concentração de Cobre Determinada no Padrão 95-2

Amostra	Intens.Liq. (cont/100s)	Diluição da Amostra(%)	[Cu] (µg/gU)
95-2-1	876 ± 297	50,0005	21,1
95-2-2	981 ± 325	50,0005	23,4
95 - 2-3	988 ± 315	49,9995	23,6
95-2-4	847 ± 324	49,9995	20,4
95-2-5	750 ± 276	50,0010	18,3
95-2-6	1 025 ± 353	49,9993	24,4
95-2-7	939 ± 304	49,9995	22,5
95-2-8	781 ± 325	49,9995	18,9
95-2-9	922 ± 341	49,9990	22,1
95-2-10	815 ± 308	50,0000	19,7

Concentração de Cobre determinada no padrão:

,

...

 $[Cu] = 22 \pm 2 \mu g/gU.$

TABELA IV.12 - Concentração de Ferro Determinada no Padrão 95-2

Amostra	Intens. Liq. (cont/100s)	Diluição da Amostra(%)	[Fe] (µg/gU)
95-2-1	6 264 ± 102	50,0005	217,5
95-2-2	6 065 ± 105	50,0005	210,5
95-2-3	6 410 ± 142	49,9995	222,5
95-2-4	6 209 ± 163	49,9995	215,6
95-2-5	6 258 ± 151	50,0010	217,4
95-2-6	6 270 ± 100	49,9993	217,7
95-2-7	6 296 ± 213	49,9995	218,7
95-2-8	6 628 ± 105	49,9995	230,2
95-2-9	6 100 ± 124	49,9990	211,8
95-2-10	6 402 ± 103	50,0000	222,3

Concentração de Ferro determinada no padrão:

 $[Fe] = 218 \pm 6 \mu g/gU.$

COMISCÃO NACIONAL DE ENERGIA NUCLEAR/SP - IPEN

TABELA IV.13 - Concentração de Manganês Determinada no Padrão 95-2

Amostra	Intens. Liq. (cont/400s)	Diluição da Amostra (%)	[Mn] (µg/gU)
95-2-1	1 463 ± 70	50,0005	23,6
95-2-2	1 406 ± 71	50,0005	22,7
95-2-3	1 380 ± 71	49,9995	22,3
95-2-4	1 305 ± 112	49,9995	21,1
95-2-5	1 303 ± 128	50,0010	21,1
95-2-6	1 337 ± 107	49,9993	21,6
95-2-7	1 306 ± 71	49,9995	21,1
95-2-8	1 333 ± 93	49,9995	21,6
95-2-9	1 234 ± 84	49,9990	20,0
95-2-10	1 408 ± 135	50,0000	22,7

Concentração de Manganês determinada no padrão:

 $[Mn] = 22 \pm 1 \, \mu g/gU.$

TABELA IV.14 - Concentração de Níquel Determinada no Padrão 95-2

Amostra	Intens. Liq. (cont/100s)	Diluição da Amostra (%)	[Ni] (µg/gU)
95-2-1	3 116 ± 254	50,0005	48,6
95-2-2	3 041 ± 233	50,0005	47,4
95-2-3	3 125 ± 261	49,9995	48,9
95-2-4	2 933 ± 214	49,9995	45,8
95-2-5	2 843 ± 241	50,0010	44,6
95-2-6	3 175 ± 248	49,9993	49,6
95-2-7	2 922 ± 256	49,9995	45,5
95-2-8	3 169 ± 226	49,9995	49,6
95-2-9	3 003 ± 223	49,9990	47,0
95-2-10	2 932 ± 185	50,0000	45,8

Concentração de Níquel determinada no padrão:

.

 $[Ni] = 47 \pm 2 \ \mu g/gU.$

COMISCAO NACIONAL DE ENERGIA NUCLEAR/SP - IPEN

Elemento	Cr	Cu	Fe	Mn	Ni
Conc. Nominal (µg/gU)	42	21	220	22	44
Conc. Deter. (µg/gU)	41±2	22±2	218±6	22±1	47±2
Precisão (%)	4,9	9,1	2,8	4,5	4,3
Exatidão (%)	2,4	4,8	4,5	0,0	6,8

<u>TABELA IV.15</u> - Precisão e Exatidão do Método Proposto.

Analisando-se a precisão e exatidão obtidas, verificase que os seus valores são inferiores a 5%, com exceção do co bre e do níquel que apresentam valores maiores, mas não exce dendo a 10%, provavelmente devido à posição que suas linhas ocupam no espectro energético, assegurando a aceitabilidade do método proposto.

IV.4. - Sensibilidade e Limite Mínimo de Detecção

Os valores calculados pelo critério 3 $\sigma^{(20)}$ para o l<u>i</u> mite mínimo de detecção e os valores obtidos para a sensibil<u>i</u> dade, para o método proposto, encontram-se na Tabela IV.16.

		1		_
Elemento	Sensil (cont	oilidade . s ⁻¹ /%)	Lim. Mín. Det. (µg/gU)	
Ca	17	016	6	
Cr	2	216	6	
Cu	10	148	7	
Fe	6	919	5	
Mn	3	713	4	
Ni	15	028	4	

TABELA IV.16 - Sensibilidade e Limite Minimo de Detecção.

IV.5. <u>Aplicação do Método aqui proposto na Análise Quantitativa</u> <u>de Microconstitutintes em UO</u>2

Realizaram-se várias aplicações do método aqui propo<u>s</u> to em análises quantitativas de microconstituintes em amostras de UO₂.

O método foi aplicado em matriz de U₃O₈ e UO₂, e os resultados obtidos encontram-se na Tabela IV.17.

TABELA IV.17 - Análise Quantitativa de Microconst<u>i</u> tuintes em UO₂.

	Amostra		an ann an thatan an thatan an an a san an a	Matriz	de U ₃ 08		ann a dh' is ran a Fain <u>an</u> a dh' is fan air
		Ca	Cr	Cu	Fe	Mn	Ni
	U-446	< 6	< 6	<7	38±3	4,4±0,7	< 4
	U-1345	17±4	9,5±0,2	<7	33±2	<4	< 4
	U-451	< 6	7,0±0,8	< 7	35±4	5,3±0,4	<4
	U-1347	14±3	6,7±0,3	< 7	86<3	5,4±0,6	5,7±0,3
	U-35	<6	39±3	<7	62±1	9,3±0,4	< 4
	Amostra			Matriz	de UO ₂		
		Ca	Cr	Cu	Fe	Mn	Ni
-	U-446	< 6	< 6	<7	42±2	<4	4,8±0,6
	U-1345	16±3	10,0±0,6	<7	33±1	<4	4,7±0,3
	U-451	<6	7,8±0,4	<7	41±2	5,2±0,6	< 4

Analisando-se os resultados obtidos, observa-se que o método proposto é adequado para a determinação destes eleme<u>n</u> tos no UO₂.

Os valores encontrados para as concentrações nas duas matrizes foram semelhantes, mostrando que ambas apresentam pr<u>a</u> ticamente o mesmo efeito de absorção de massa.

Comparando-se os resultados obtidos com o de uma an<u>á</u> lise semi-quantitativa de rotina realizada pela técnica de e<u>s</u> pectrografia de emissão, não se verifica desvios discrepantes. Pretende-se, em um futuro trabalho, comparar exaustivamente as duas técnicas em análises quantitativas de rotina.

DISCUSSÃO E CONCLUSÃO

O método de análise apresentado possibilita a dete<u>r</u> minação simultânea de microquantidades de Ca, Cr, Cu, Fe, Mn e Ni em UO₂ nuclearmente puro pela técnica de fluorescência de de raios-X, não necessitando de processos químicos de separ<u>a</u> ção.

A importância do desenvolvimento deste método b<u>a</u> seia-se principalmente, no fato de se poder utilizar também a técnica de fluorescência de raios-X no controle analítico do combustível nuclear para reatores PWR como mais uma opção de análise.

Este método, apesar de aplicar-se a um número limit<u>a</u> do de elementos, consegue determinar aqueles que devem ser controlados durante o processo de fabricação do combustível nuclear, podendo ser aplicado tanto na sua etapa inicial, o<u>n</u> de obtém-se o UO₂ do diuranato de amônio nuclearmente puro (a partir do DUS), ou mesmo na etapa onde produz-se o UO₂ a pa<u>r</u> tir do UF₆ via processos AUC (adotado pela Alemanha) ou DUA.

Tomando-se como base o controle da qualidade rotine<u>i</u> ro realizado na Alemanha pela RBU ⁽¹⁸⁾, cuja tecnologia está sendo totalmente transferida ao Brasil, observa-se que são d<u>e</u> terminados nas pastilhas de UO₂ os elementos: F, Fe, Ni, Si, Ca, Cl, C e N que são suficientes para caracterizar o combu<u>s</u> tível devido ao processo adotado.

Uma análise completa das impurezas só é realizada a cada lote de pastilhas produzido, desta forma fica evidente que pode-se lançar mão da técnica de fluorescência de raios-X para o controle analítico de praticamente todas as etapas do seu processo de fabricação, uma vez que pode-se determinar os seus principais contaminantes.

Os limites de detecção obtidos por este método, mo<u>s</u> tram que os parâmetros instrumentais ligados ao espectrômetro de fluorescência de raios-X foram ajustados de modo a atingir o objetivo desejado, ou seja, a determinação quantitativa de impurezas no UO₂ nuclearmente puro.

Na Tabela l tem-se os valores dos limites de dete<u>c</u> ção para as técnicas de espectrografia de emissão ⁽¹⁵⁾ e flu<u>o</u> rescência de raios-X, mostrando que os valores obtidos não são discrepantes.

<u>TABELA 1</u> - Limite de Detecção para as Técnicas de Espectrografia de Emissão e Fluorescência de Raios-X.

Elementos	Espectrografia de Emissão (µg/gU)	Fluorescência de Raios-X (µg/gU)
Ca	-	6
Cr	3	6
Cu	1,5	7
Fe	14	5
Mn	1	4
Ni	2	4

Comparando-se também os valores obtidos para o lim<u>i</u> te de detecção com os obtidos pelo laboratório da CETAMA ⁽¹⁰⁾ com a técnica de fluorescência de raios-X, na determinação de Ca $(0,04\%/g U_3O_8)$, Cu $(0,05\%/g U_3O_8)$ e Fe $(0,05\%/g U_3O_8)$, v<u>e</u> rifica-se que melhores resultados foram conseguidos neste tr<u>a</u> balho. Isto deve-se também à técnica de preparação de amostra empregada, onde foi utilizado o método das pastilhas prens<u>a</u> das de dupla camada, que não diluindo muito as amostras, como no caso das pastilhas fundidas usadas pela CETAMA, possibil<u>i</u> ta obter uma sensibilidade melhor.

Na Tabela 2 são comparados os valores da precisão e exatidão para as técnicas de espectrografia de emissão (15) e fluorescência de raios-X na determinação dos elementos em m<u>a</u> triz de urânio.

A boa precisão e exatidão apresentadas pelo método proposto assegura a sua aceitabilidade, podendo até ser comp<u>e</u> titivo com os de outras técnicas quando se dispõe de espectr<u>ô</u> metros mais modernos que podem ser acoplados a computadores tornando o tempo gasto para as análises muito menor.

Em um trabalho paralelo a este, verificou-se que é possível a determinação de Bi, Co, Sn, Ti, Th e V utilizandose o método proposto, podendo-se chegar a limites de detecção inferiores a 20 μ g/gU, quando os parâmetros instrumentais são devidamente ajustados.

Este método poderá ser utilizado para a determinação de impurezas em urânio metálico, óxidos (UO₃ e U₃O₈), e sais $(UF_4, UO_2(NO_3)_2 e (NH_4)_2 U_2O_7)$, necessitando-se apenas, em a<u>l</u> guns casos, de uma correção do efeito matriz, ou para qua<u>l</u> quer composto de urânio que possa ser convertido a U₃O₈.

O método aqui proposto, além de ser relativamente r<u>á</u> pido e simples, apresenta ainda como vantagem a facilidadenas preparações das amostras, possibilitando sua implantação de<u>n</u> tro de um sistema de controle da qualidade de combustiveis n<u>u</u> cleares.

TABELA 2 - Precisão e Exatidão para as Técnicas da Espectrografia de Emissão e Fluorescência de Raios-X.

Ĵ

	Espectrog	rafia de Emi	ssão	Fluores	cência de Rai	X-so
Elemento	Número de determinações	Precisão (%)	Exatidão (%)	Número de determinações	Precisão (%)	Exatidão (%)
ප	15	18	1,3	10	4,9	2,4
ទី	15	19,8	9	10	F.6	4,8
Ре	16	11,58	11,52	10	2,8	4,5
ЧW	15	11,12	13,8	10	4,5	0'0
IN	19	15,3	3,3	10	4,3	6,8

COMISCÃO NACION L DE ENERGIA NUCLEARISE - TPEN

REFERÊNCIAS BIBLIOGRÁFICAS

- ABRÃO, A.; MORAES, S.; PEDRÍ, E. Determinação de micro quantidades de cádmio, cobre e prata em urânio de ele vada pureza por espectrofotometria de absorção atômica. In: SOCIEDADE BRASILEIRA PARA O PROGRESSO DA CIÊNCIA. XXI Reunião, realizada em Porto Alegre em jul. 1969.
- ABRÃO, A.; PEDRÍ, E.; MORAES, S. Determinação de metais alcalinos e alcalinos terrosos e manganês em compostos de urânio, por espectrofotometria de absorção atômica.
 In: SOCIEDADE BRASILEIRA PARA O PROGRESSO DA CIÊNCIA.
 XXI Reunião, realizada em Porto Alegre, jul. 1969.
- 3. AMERICAN SOCIETY FOR TESTING AND MATERIALS. <u>Standard</u> <u>specification for sintered uranium dioxide pellets.</u> Philadelphia, Pa., ASTM, 1979. (ANSI/ASTM C776-79).

AQUINO, A.R. de Comunicação pessoal.

1.

2.

4.

5.

6.

7.

8.

9.

- ARAUJO, J.A. <u>Estudo da precipitação continua de diura</u> <u>nato de amônio para a produção de UO₂ cerâmico</u>. São Paulo, Instituto de Energia Atômica, Abr. 1976. (IEA-015).
- ATALLA, L.T. <u>Interpretação quantitativa de resultados</u> <u>experimentais</u>. São Paulo, Instituto de Energia At<u>ô</u> mica, Maio 1978. (IEA-60).
- BAIRIOT, H. UO₂ technology. In: INTERNATIONAL ATOMIC ENERGY AGENCY. <u>Quality in nuclear fuel technology</u>, <u>International status IAEA regional Seminar on...</u>, <u>Buenos Aires</u>, Argentina, nov. 12-23, 1979.
 - BERTIN, E.P. <u>Principles and practice of X-ray</u> <u>spectrometric analysis</u>. New York, Plenum, 1970.
 - COMISSÃO NACIONAL DE ENERGIA NUCLEAR. <u>Tecnologia de</u> <u>fabricação do elemento combustivel do reator tipo PWR</u>. Rio de Janeiro, CNEN, Out. 1971. (CNEN-DR-71-13).

- 10. COMMISSARIAT À L'ENERGIE ATOMIQUE. <u>Analyse et contrôle</u> <u>des concentrés uranifères-dosage d'impurites par</u> fluorescence-X. Fontenay aux Roses, 1978. (CEA-CETAMA-ACCU-1978), (ACCU-25).
- 11. CORDFUNKE, E.H.P. <u>The chemistry of uranium</u>. Amsterdam, Elsevier, 1969. p.76-80.
 - 12. COSTA, J.R. da <u>Curso de introdução ao estudo dos ciclos</u> <u>de combustível</u>. São Paulo, Instituto de Energia Atômica, Mar. 1972. (IEA-21).
 - 13. DÍAZ-GUERRA, J.P. <u>Analisis de sodio metal por espectro</u> <u>metria de fluorescência de rayos-X - Determinacion de</u> <u>Hf, Mo, Nb, Ta, Ti, V y Zr</u>. Madrid, Junta de Energia Nuclear, 1981. (JEN-486).
 - 14. DÍAZ-GUERRA, J.P.; BAYÓN, A.; ROCA, M. <u>Analisis de</u> <u>concentrados de urânio mediante fluorescência de</u> <u>rayos-X</u>. Madrid, Junta de Energia Nuclear, 1978. (JEN-400).
 - 15. GOMES, R.P.; LORDELLO, A.R.; ABRÃO, A. <u>Estudo da efi</u> <u>ciência de AgCl, In₂O₃, Ga₂O₃, NaF, LiF e SrF₂ como carreadores espectrográficos na análise quantitativa <u>de dezoito elementos microconstituintes em urânio</u>. São Paulo, Instituto de Energia Atômica, Fev. 1977. (IEA-467).</u>
- 16. HAKKILA, E.A.; HURLEY, R.G.; WATERBURY, G.R. X-ray fluorescence espectrometric determination of zirconium and molybdenum in the presence of uranium. <u>Analyt</u>. <u>Chem.</u>, <u>36</u>(11):2094-7, Oct. 1964.
 - 17. HODEN, R.B. <u>Ceramic fuel elements</u>. New York, Gordon and Breach, 1966.
 - 18. Informação obtida junto ao Reaktor Brennelement Union GmbH. (RBU)^{*}.
- 19. INTERNATIONAL ATOMIC ENERGY AGENCY. <u>Production of</u> <u>yellow cake and uranium fluoride: proceedings of</u> <u>advisory group meeting on..., held in Paris, 5-8 June,</u> <u>1979</u>. Vienna, IAEA, 1980.

- 20. JENKINS, R. <u>An introduction to X-ray spectrometry</u>. London, Heyden, 1974.
- 21. JENKINS, R. & DE VRIES, J.R. <u>Practical X-ray spectrometry</u>. London, MacMillan, 1967.
- 22. KARAMANOVA, J. Self-consistent empirical correction for matrix effects in X-ray analysis. <u>J.Radioanal</u>. <u>Chem.</u>, <u>57</u>(2):473-9, 1980.
- 23. KNOKE, D.R.; WALDRON, H.F. The determination of calcium in uranium ores concentrates by X-ray fluorescence. <u>Adv. X-Ray Analysis</u>, <u>8</u>:448-55, 1961.
- 24. KOPELMAN, B. <u>Materials for nuclear reactor</u>. New York, McGraw-Hill, 1959.
- 25. KOSTA, L. General comments on the applications of methods other than spectrography and spectrophotometry to the analysis of the intercomparison sample. In: INTERNATIONAL ATOMIC ENERGY AGENCY. <u>Analytical</u> <u>chemistry of nuclear: report of a panel on..., held</u> <u>in Vienna, March 23-26, 1964</u>. Vienna, IAEA, 1966. p. 40-7. (Technical reports series, 62).
- 26. LIMA, F.W. & ABRÃO, A. <u>Produção de compostos de urânio</u> <u>atomicamente puros no Instituto de Energia Atômica</u>. São Paulo, Instituto de Energia Atômica, Abr. 1961. (IEA-42).
- 27. LONDSDALE, K., ed. <u>International tables for X-ray</u> crystallography: physical and chemical tables. Birmingham, Kynoch, 1962.
- 28. LORDELLO, A.R.; ABRÃO,A.; GOMES, R.P. Spectrochemical procedures for analytical control of eighteen general impurities and fourteen rare earth elements in UO₂ pellets and other uranium-base materials. <u>J.Nucl.</u> <u>Materials</u>, <u>81</u>:241-47, 1979.

- 29. MINCZEWSKI, J. Analytical chemistry of nuclear materials. In: INTERNATIONAL ATOMIC ENERGY AGENCY. <u>Analytical chemistry of nuclear materials: report of</u> <u>the panel on..., held in Vienna, 12-17 September,</u> <u>1962</u>. Vienna, IAEA, 1963. (Technical reports series, 18).
- 30. MULLER, R. Dependence of fluorescent intensity on mass absorption coefficient of matrices in the trace element determination by X-ray fluorescence. <u>Spectrochim</u>. <u>Acta</u>, <u>20</u>:143, 1964.
- 31. MÜLLER, R. Die Roentgenfluoreszenzintensitat der Elemente bei Verwendung Konzentration in Gemischen, apud MÜLLER, R. <u>Spectrochemical analysis by X-ray</u> <u>fluorescence</u>. New York, Plenum, 1972. p.52-4.
- 32. MULLER, R. <u>Spectrochemical analysis by X-ray</u> <u>fluorescence</u>. New York, Plenum, 1972.
- 33. NALIMOV, V.V. <u>The application of mathematical statistic</u> to chemical analysis. Oxford, Pergamon, 1963.
- 34. SIEMENS, H. Bestimmungen von Elementen Geringer Kozentration in Bleiglanz mit Hilfe der Röntgenfluoreszenzanalyse. <u>J. Erzbergbau u.</u> <u>Metallhüttenuwesen</u>, <u>15</u>:163.
- 35. STOECKER, W.C. & MCBRIDE, C.H. X-Ray spectrographic determination of thorium in uranium ore concentrates. <u>Analyt. Chem.</u>, <u>33</u>(12):1709-13, Nov. 1961.
- 36. TAYLOR, B.L. et al. The determination of nickel, chromium, iron and tungsten by X-ray fluorescence spectrometry. In: INTERNATIONAL ATOMIC ENERGY AGENCY. Analytical methods in the nuclear fuel cycle. 1971.
- 37. WILKINSON, W.D. <u>Uranium metallurgy</u>. Interscience, 1962.

* Eng. Hubert Mandrysch

COMISCÃO NACIONAL DE ENERGIA NUCLEAR/SP - IPEN