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ABSTRACT

THE FINITE ELEMENT RESPONSE MATRIX METHOD FOR‘
COARSE MESH REACTOR ANALYSIS
by
Horacio Nakata

Chairman: William R. Martin

‘A new technigue ié developed with an alternative
formulation of the response matrix method implemented
with the finite element scheme. As in standard response
matrix methods, the feactor core is partitioned into
several coarse meshes and the global éolution is obtainted
imposing continuity of partial currents across the bound-
~aries of thé coarse meshes.

The finite element method, with quadratic Serendipity
elements, is applied in the local calculations(for each
coarse mesh). The_Weak form of the inhomogeneous diffusion
equatioﬁ is then solved for prescribed partial currents
on the boundary. The local calculation results are used
to generate the response matrices which are then used in
the global solution fo; the partial cﬁrrents and fluxes.
The partial currents and fluxes in the global calculations

are independently expanded in quadratic or cubic Serendi-



pity finite element basis functions. The equations for the
global expansion coefficients are solved ﬁsing Gauss-Seidel
iterationsuntil a converged partial currentvdistribution
is obtained. |

The response matrix method in the.present formulétion
includes response matrices due to both incoming partial
currents and sources (inscatter%fission), thus.découpling
the response matrix generation from the neutron mulfipli—
catioh factor. |

To‘evaluate the performance of the finite element
coarse mesh method the assembly averaged power distribution
and detailed neu£r6n flux distribution for tWo difficult
and realistic problems, the 2D-IAEA benchmarkvproblem (zone-
loaded PWR) and a Biblis benchmark problem with checkerboard
loading,'have been obtained. The results indicate that the
proposed method yields satisfatory accuracies with relative-
1y large coarse mesh size. Furthermore, the use of the
finite'elemeht method for the response matrix generation
allows the consideration of different geometries( such as
triangular geometry for fast reactors), the treatment of
spatially dependent crosé sections for burn-up calculations,
and the treatment of local heterogeneities.Finally, the use
of separate matrices for currents andsoprces eliminatéé
the expensive regeneration of the response matrices for
eigenvalue problems and has allowed conventional solution

techniques for multigroup problems.
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CHAPTER 1

INTRODUCTION

The development 6f the nuclear industry dﬁring the
past few decades has been accompanied with steadily in-
creasing economic restrictions and safety requirements.
These constraints place demands on nuciear analysts
because one needs to know the neutron flux distribution
witﬁin the reactor in.order to perform the'variouS‘Safety
and economic analyses. And in order to keep pace with
these demands fhey have strived to improve the accuracy
and computational efficiency of calculational methods for
determining the neutron flux distribution in a reactor.

As the complexity and size of power reaétOrs increase
the well-known and reliable techniques become less prac-
tical to be used on a routine basis for neutronic analyses,
whether used as part of an economic analysis fo optimize a
fuel management scheme or to determine detailed fuel pin
power profiles for a safety analysis. Thus there is a
need for more efficient yet sufficiently accurate techni-
ques to substitute for the reliable but expensive fine
mesh diffusion theory codes (e;g., PDQ-7(1)) £o determine
the neutron flux distribution in the reactor core. Con-
sequently, research in the area of neutronics methods

1
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development has been an actiVe area for many years and will
, _
continue to be an active area for many years.
The simplicity of the finite difference equations and

(2-4) to

fhe relative efficiency of the well-known methods
- solve the associated linear algebraic equations have been
the majorva6vantages of the fine mesh finite difference
method. In addition, detailed pin power distributions
which agree very well with measured power profiles can be
obtained because the mesh size is comparable to the fuel
pin pitch. The spatial dependence of the neutron flux is.
approximated by'a low-order Taylor series and the solution
is obtained imposing neutron balance ih the fine-mesh
subjecﬁ to interface continuity and external boundary con-
ditions. However, since it is a-low order approximation
the computational time necessary to obfainbthe solution
tends to become excessively long for mesh spacing typi-
cally used in a global (e.g., 1/4 core or full core) fine
mesh calculation.

Thus fine mesh calculations are impractical for roﬁtine
two-dimensional global calculations and out of the question
for three-dimensionéi‘global éalculations, and emphasis
has been placed on developing computational methods to be
used on a relatively coarse mesh, on the order of several
diffusion lengths, compared to fine mesh. These methods
are appropriately termed coarse mesh methods, and they

cover a wide range of approximations, ranging from



empirical parameter‘fittings to sophisticated hiéher order:
finite element methods. In the basﬁ decadé_a number of |
coarse mésh methods- have been developéd and-due to the lack
6f an unifying analysis of the existing methods, precise
~and unambiguous-élassification of these methods bécome54
difficult. 'But in the nexf section an.attempt is made to

define representative broad categories in which most of the

present coarse mesh methods may be included.

~1.1. Coarse Mesh Methods

Basically the coarse mesh methods which have been
developed or are still under development can be divided

in four broad groups:(S)

coarse mesh finite difference
methods, flux synthesis-methods,>nodal methods, and re-
sponse matrix methods. But some of the recent coarse mesh
methods defy precise characterization because they combine
some ideas of these bésic methods, e.g., nodal collision
probability methods,.coarse mesh‘synthesis method, nodal
expansion method, coarse mesh expansion method, nodal .
Green's function method, etc. But the broad common goal of
all these coarse mesh methods has been to satisfy the
accuracy requirements for reactor design calculations,
usually quoted as a few tenths of a percent for the neutron
multiplication factor and within a few percent for the

local power distribution, while avoiding the excessive

computational expense characteristic of fine mesh methods.



(6)

The coarse mesh finite difference,method is
based on the fine mesh finite difference scheme, but the
number of unknowns 1is reduced by using a coarse mesh_with
appropriate pafameter corrections. The parameter correc-
tions have been obtained by a wide range of techniques:
empirical fittings, analytical calculations and finite
difference solutions. . Higher order approximations for
the neutron flux expansion inside the_coarse meshes have
also been considered.(7’8)
Flux synthesis methods, either singie— or multi-

channel (2712).

, have been developed in the attempt to
reduce the computational time and still retain satisfac-
tory accuracy. The procedure is to relax the spatial
discretization in the direction parallel to the fuel ele-
ments, taking advantage of the fact that the flux is rela-
tively smooth in this direction due to the.laCk of spatial
heterogeneities. The spatial distribution of the neutron
flux in the reactor is obtained by expandihg the unknown
lsolution in terms of a few local solutions of two-
dimensionai finite.difference equations, where the expahr
sion coefficieénts are determined by a variational principle.
Closely related to the coarse mesh finite difference

(6,13-18)  qpo pasic deriva-

methods are the nodal methods.
tion of nodal methods is based on the concept of neutron
balance, which is formulated in terms of integral quanti-

ties such as average neutron flux and average current.



Different approaches are used in order to determine the

relationship between the neutrén flux in the node and

(6)

neutron current on its faces. Early methods were

limited by the assumption of constant nodal fluxes, but

later improvements have considered spatial dependence

inside the nodes.(137181

(19)

In particular, the nodal expansion

method and the nodal Green's function method ?%) assume

(15) in the

Xx-y—-2z separability of the flux distribution
nodes‘and thé nodal coupling coefficients are calculated

by combining several one-dimensional calculations. ‘The
combining coefficients are determined by weighted residual
techniques and continuity conditions. The coupling between
directions is taken into account by expanding the trans-
versal leakage in quadratic polynomials with coefficients
dependent on the average transverse leakage in adjacent
nodes. ‘

The primary results computed in nodal methodé are
average fluxes and average currents for the nodes. However,
higher order interpolation Schemes(l4)'have been developed
to obtain the detailed spatial distribution of the flux
inside the nodes f:om'the information contained in the
average quantities.

(21,22)

The finite element method widely used in

structural analysis has been applied to reactor analy-
sisf23—3l) Since high order approximations can easily be

incorporated, the element volume can be relatively large,



resulting in a reductidn of the number of unknowns. The
flux is expanded in piecewise polynomials within each
element and the system of equationsto be solved for the
expansion coefficien£s is obtained by an appropriate varia-
tional principle or integral law formulation. The flexi-
bility in the choice of thefinite element basis functions
allows the method to be applied to quite irregular geo-
metries including local mesh refinement within a large
homogéneous region. Furthermére the theoretical founda-
tions of the finite element method are well esta-
blished(21’27) and definite analytic error bounds can be
predicted for most applications of intereét. And since
the polynomiaié are defined in a'pieéewise fashion, con-
tinuity or jump.conditions may 5e readily incorporated

at the interfaces between regions.

However, ﬁhere are also some disadvantages with the
finite element method. The irregularity of non-zero ele-
ments in the coefficient matrix may result in complicated
storage and addressing schemes. For large problems the
direct inversion may not be econcmical(ls) and iterative
techniques may have to be used. Eigenvalue problems can
be solved by the power method but some of the acceleration
schemes regularly used in finite difference methods to

(3/4) nay not represent real

advantages for finite element methods {?2}

accelerate outer iterations



The responée maﬁrix method can be considered a parti-
cular class of nodal methods. Basicaily the procedure is
to divide the reactor into several coarse meshes within
which explicit solutions for the neutron flux distribution
for a given'incident current'distributioﬁ is obtained.

The neutron fiux distribution can then be used to determine
the response functions (e.g.{~pqygbing'curraﬁ:distributions)
for these sﬁall domains. Thus the net result is a
"response matrix" corresponding to the change in the out-
going current (the responSé):dde to a chéngé in the input
current. It is expected to save in the global time by
solving the reactor equation over several small domains
rather than solving.the problem at once over the entire
domain. For reactors with only ‘a few types of fuel elem-
menté the response matrix method can yield significant
savings in computational time.

The response matrix method has evolved fromthe ori-
ginal study of féflection and transmission of light through

(32);

a pile of plates by G. G. Stokes in 1862,and subsequent

applications of response functionswere made in several

(33)

fields. The neutron transport equation was treated by

a similar principle known as the principle of invariant

imbedding(34), which quickly led to several additional

(35-44)

studies in this area.



(36)

In the early stages of development the response

matrix was generated by analytiéal solutions of tﬁe diffu-
sion equations. However the appliéation of the response
ﬁatrix method to 1attice‘calculétions necessitated.fhe use
. of more elaborate transport methods for determining the
response matrix, such as collision probability =

(37'40_42), Monte Carlo method (38740} or aiscrete

(39)

methods

ordinates methods. The generation of response func-

tions by experiment has also been suggested.(33)

The partial currents which are related by the response

matrices and which connect the coarse meshes in the global

calculation have been from the beginning been treated as

(35) (45,46) used

spatially dependent. Burné and Dorning
a local Green's function for the diffusion-removal operators
to generate response matrices which inéorporated high order
approximations- for homogeneous rectangular coarse meshes.
The flux and the partial currents are expanded in poly-
ﬂbmials and the ggpansggg;gggéficients are determined by a
weighted residual technique. The high computational cost

(20)'to develop

of this method led Lawrence and Dorning
the nodal Green's function method mentioned above. 1In. the
higher order response matrix method of Weiss and

1(43), the diffusion equation with a given incident

Lindah
partial current distribution which is itself expanded in
Legendre polynomials is solved over the node via Fourier

series expansion. The response, the outgoing partial



current distribution, is then a separate Legendre expan-
sion. Similar to the local Green's function methéd, the
generation of the response matrix is limited to homogeneous
rectangular coafse meshes. Thus the effect of heteﬁo—
geneities (e.g., burnahle poison) onlﬁhe outgoing partial
current cannot be simulated.

Each one of the above mentionea coarse mesh methods
adopts a distinct metodological approach with associated
advantages and disadvantages; Thus one might expect that
a method which combihes some of these basic methods,
may benefit from the favorable characteristics of the con-
fributing basic methods. Of course, an unfavorable result
may occur by combining"the*different‘methods-in that the
theoretical foundations of the fesulting method may be
weakened or lost completely and some of the undersirable
characteristics may be emphasized in the combined method.

Although it is difficult, if not impossible, to single
out a particular coarse mesh method which clearly outper-
forms the other methods, some of the most efficient methods
have been obtained through a combination of the basic
‘methods discussed above. ~In particular, two successful
combined methods are the nodal expansion methods and the
nodal Green'é function method which were déscribed above as
being nodal methods. They are basicélly nodal methods
with some.ideas of the finite element methods. The one-

dimensionl neutron fluxes are expanded in piecewise poly-

¢ Y ENUCLEARES ;
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nomials and the coefficients are determined by a weighted
residual technique} |

The present investigation also considers a combined
method. 'The finite element method is applied in the con-
text of the response matrix method. 1In the next chapters

the details of the adopted approach is presented.

1.2. Research Ohjectives

The development of a new coarse mesh method should
take into account existing methods as well as the goals
and objectives that any coarse mesh method should attempt
to meet. The above literature survey has described the
current sfatus of coarse mesh methods and now a brief
description of the outstanding ?roblems in the area of
cogrse mesh analysis will be given. These problems, which
may be considered as objectives and goals for future work
in the coarse mesh area have been presented succinctly
by Froehlich;cs).

1) Improve the ability to predict local guantities
(e.g., spatial distribution of the neutron flux
and powerl}

2) Allow efficient modelling of feedback effects
(e.g., Doppler and void coefficients);

3)'Account for the effect of depletion induced spatial

cross section variations;
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4) Allow for héxagonal or triangular geometry
(e.g., fast feactor calculations);

5) Account for the effect of heterogeneities and
improve the methods for homogenization (e.g.,
éaicﬁlation of equivalent homogenized group con-
stants).

6) Contribute to a unifying theoretical foundation
for coarse mesh methods.

While the current research effort will not address all
of the abové concerns, the objectives of the present inves-
tigation are to contribute to the solution of several of
the above mentioned problems presently encountered by the
coarse mesh methods when uséd in standard reactor design'
analysis calcﬁlations. In partiéular,'the current inves-
tigation can be readily extended to address: prediction
of local quantities in the presence of heterogeneities,
the capability to inclﬁde the effect of depletion induced
lspatial cross section variations and treatment of tri-~

angular geometry for fast reactors.

1.3. Summary of Investigation

The present investigation starts from the diffusion
theory approximation and applies the finite element method
to an alternative formulation of the response matrix
method.This alternative form has a significant advantage

in that it eliminates the need for the expensive recal-

Ina - ' 7 -
- "":lE‘RES!
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culations of thé‘respohse matrices in the eigenvalue-
problems, as will be discussed_in more detail in éhapter 2.
Briefly the reactor is partitioned into coatse meshes
»énd the solution.for the diffusion equation inside each
coarse mesh. is obtaihed by the finite element method and
the response matrices are generated. As will be described
in more detail later, there are two basic response matrices,l

one relating to the outgoing partial current due to an

internal source (fixed source, fission source, or inscatter

sourse) and the other giving the outgoiﬁg partial current
‘due to diffusion of the incoming partial current. The
response matrix of each coarse mesh is then projected on
separate basis functipns defined on the reéctor core and
the neutron flux is obtained by an iterative scheme.

With this approach some advantages inhg;ent to the
finite element method can be exploited. The géometry of
the coarse meshes can be rectangular or triangular and even
the extreme case of an irregular boundary can be accommo-
dated. Particular regions can be treatéd with higher
detail than the rest of.the domain with local mesh refine-
»ment. Spatially depéndent cross sections can also be con-
sidered in this approach with little increase in computa-
tioﬁal cost, a feature whichlis desirable for burn-up

calculatiohsc23)

or for heterogeneous nodes. Local quan-
tities such as the neutron flux and power distributions

are explicitly defined over the entire reactor core in
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terms of a function expansioﬁ, which is not the case for’
many of the coarse mesh méthods.(ls)

The inherent disadvéntage of the finite element
method in large reactor problems, the irfegular large
" matrix and less highly’deveiopea schemes for matrix
inversion, .is aﬁoided in the present investigétion because
the finite element matrix.equations are solved gnly at the
coarse mesh level, albeft several times.

A brief description of the body of tﬁe present
investigation is presented below.

In Chapter 2 the theory. and the alternative formula-
tion of the respbnse matrix method is presentéd.

The finite element solﬁtion for the diffusion equa-
tion in the coarse mesh and thenscheme,td generate the
response matrices is described in Chapter 3. To implement
the finite'eleﬁent response matrix method, the bésis func-
tions .and the iteratioﬁ schemes, fér'both.inner iterations
and outer iterations, are éresenfed in Chapter 4.

Chapter 5 shows the results of the test calculations
using the proposed method for two types of reactor pro-
blems:a fixed source problem in a simplified bare reactor
and two two—dimensionai benchmark eigenvalue problems;
Concluéions and recommehdations for further study are
presented in Chapter 6. |

The acceleration schemes, asymptotic source extrapo-

lation and the Chebyshev polynomial method, applied to
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the finite element'response matrix method are.presented
in Appendix I.

A variational formulation for the diffusion equation
solution is shown in Appendix II.

Appendix III gives an interpretation of the'bléck-
Jacobi spectral norm for the response matrix method, and
the diffusion group constants for evaluation of the

present investigation -are presented in Appendix IV.



CHAPTER 2

RESPONSE MATRIX METHOD

In Sec. 2.1 the basic theoretical formulation of the
response matrix method is presented following closely
the work of Weiss and Lindahl(4), and to illustrate the
.method,.a simple 1-D slab reactor is examined. 1In Sec. 2.2
aﬁ alternative formulation of the response matrix method

is presented.

2.1. Thebry

Consider the domain {2 in which the solution to the
neutron transport or diffusion equation is sought and
divide <2 'into N subdomains _f2£, i=l,...,N , called
coarse-meshes. Each coarse-mesh {2, is bounded by a
piecewise smooth boundary 4325 with the outward directed

normal vector n(rg), where rg is the position vector on the

boundary.

Define compact or - coupled system as a system in which
the domain (2 is simply connected'and bounded by a piece-
wise smooth boundary cﬁjz,and the loose system a system in
which none of the boundaries cﬁJQZ' has points in common
with any other boundarf‘&iﬂ%ﬁ. Accordingly most reactor
calculations are concerned with coupled systems whereas

loose systems may be encountered in criticality problems,

15
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such as the analysis of fuél storage arrayé. The .deriva-
tion shown below, while applicable to a coupled systen, is
readily adapted to a loose system with only minor modifica-
tions. .

It is assumed that an arbitrarily accurate solution
for the neutron. transport or diffusion equation can be
found in coarse-mesh {2/ subject to the boundary conditions
on Jl?[ , corresponding to theirradiation of JUQ[by an
. arbitrary current JECrsL; In transport theory J;(rs) cor-

responds to the angular flux at the boundary in the direc-
tion & such that 2 ‘n(rg) < 0, and for diffusion theory
J_(rs)-is the partial currggf directed against the normal
veczgr to the boundary J:IZ( at rs.

The emerging current J (rs) from the boundary <{321
due to the irradiation of current J. (rs) on ciklt can be
obtained from the above solution for the neutron flux. 1In
the transport theory J (rs) is the angular flux at the
boundary in directions 8O such that ‘XZ n(rs) > 0, and
.in diffusion theory JI(rs) is the partial current in the
direction of the normaifzﬁ the boundary cCJZ; at rq

For the sake of simpiici%y Jz(rs) will be reE;rred to
as the outward partial current and Ei(rs) as the inward
partial current regardless of the appr;;imation utilized
to obtainthe neutron flux.

Because of the linearity of the transport and diffusion

equations the relationship between J;(rs) and J;(rs) can be
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. )
concisely expressed by a linear transformation

5 )= G)f By Ll + T () @
L%

ﬁhere J;o(rs) is the outward partial current due to the
-external s;;;Ce inside the coarse-mesh. ‘The determination
_of the kernel I[R;(r§ —»rg) is one of the objective{of the
résponse matrix m;ZhodT- This kernel depends only on the
geometrical and materiai properties of the coarse-mesh__Qy A
e.g., the diffusion.coefficient and the absorption and

production cross sections.

S )

‘ ‘ q 7/_@) e (%)

Fig.2.1 TIllustration of domain (2, subdomain-~f2[,
and inward and outward partial currents.,.
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) 1§ .
Define Hik(fi—-»rs), i,k=1,...,N , as the proba-

bility that a neutron leaving the surface J—Q£ at rg

reaches rg on the surface J_Q;: . If the Hyp ( rs - rs)
are know;;_,~ the inward partial current Jj (rg) for the

coarse-mesh —(2{ can be related to the ou-{:_ward partial .
currents J;(ré) from the corase-meshes ﬂ‘i , k=1,...,N,

——

by the relationship

' ”‘f’ ar.Q,q
P#sL

N
J—(@)T'Z | %713(' (@’; —>/_r§)- {7‘(@;)0@ (2.2)

For coupled systemg /{;(.(jré. —> rg) is easily obtain-
.able by imposing continuity :3? the_;az;tial currents across
the boundaries, but for loose systems additional calcula-
tions are needed.

It was assumed that the solutions of the transport or
diffusion equa-t‘ions for each coarse mesh _f2; are known for
an arbitrary 'inwara partial current J;(rs) . Then the

neutron flux in the coarse mesh _(Z) can be expressed in

terms of the kernel Mi‘(?rs —>x),

500~ Minoa) T e)dn+ G, (x) @
Je; |
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where éﬁio(g) is the neutron flux due to the external
source inside -{Z/ , and Mi(ré 5,5) is generated during
the solutioﬁ of transport or—giffusion solution in the
coarse mesh (2

Therefore. the flux for the entire domain is obtained
if either J;(rsi_or J;Crsi, i=1,...,N, are known.

Equatipng—(z.l), (Eté),-and (2.3) comprise the con-
ventionalvformulaﬁion of the response matrix method for the
solution to the proposed problem.

As an example of the response matrix method, the
one~dimensionalvslab eigenvalue problem is presented.. The
external source is then zero and the diffusion equation
is solved analytically, subﬁect to unity inward partial
current on a face of the sléb of thickness h. From the
neutron flux solution, the reflection and transmission
(55)

functions are calculated by Weiss as

n= _sinBf ) 6’=27&n'1/293) ,fﬁ (7{’1%’7220
.ﬂhéﬁ$+5y
éin &

Sin(Bhr &’ respectivey , or

and t =

n= ‘9[1 up/f/(/] 1-2DK /(?:(.Z—é)/ﬂf)O
z- Ezixp/-ZK/) Z+Z.D'K

and t = ,(j-gﬁ ey [’A’#) ’ respecvtively,
L= & gxp(-2k4)
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" where D is the diffusion coefficienf;
ﬁ{z is the migration area, and
k is the ratio of infinite multiplication factor
and effective multiplication factor (eigenvalue).
The partial currents on the face of the slab can

then be related Ey'a response matrix as

W [ 7

J‘Z{/ V4 £ | [JZ{/

J%)J £ n J’/O)J

-

i J L

2.2, Alternative Formulation

Unfortunately the response matrix method 'as formu-
lated above is not in a convenient form fdr application to the
eigenvalue problem (e.g., determination of the neutron
multiplication factor,'keff). The kernel Ri(fé-—>-rs) is
dependent on the neutron multiplication withi;—fhe ;;érse
mesh 42/ and since the fission source is scaled by the
éigenvalue, the ke;nellRi(ré —»-rs) has to be generated

several times during the course of the solution to the

eigenvalue problem.
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This investigation treats-an altermative formulation of
the response matrix method wherein the expensive recalcu-
lations of the kernel in the eigenvalue problems are eli-

minated by considering two kernels: lef(réu4>rs) and

'lRi(E.;>rs). They are dependent only on the diffusion coef-

P ]

ficient and the absbrptidn cross section of the coarse.
mesh (Z; , and they are independent of the production
cross section (fiésion + inscatter). This allows the
non—linearity of the outward partial current caused by
the fission}source and the inscattering source to be_
transferred to the iterative scheme used to solve the
eigenvalue problém or the fixed source problem as shown in
the next section.

As a result of the lineari£y of transport and diffu-
sion equations the outward partial current J;(rs) can be

given by the follOwing'linear transformation

s, (2.4)
...Q’('

1‘=1/‘.'/A//

f;4£¢£65'7
ne 2.
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where S, (r) is the neutron source within £he coarse
mesh .2/ due to the fission source, the inscatter source,
and the external source. For eigenvalue problems the
external source is absent and the fission source is
scaled by the inverse of the multiplication factor, keff'

The kernel Rieré—>.raL gives the outward partial
current response due—;o t;; diffusion of an inward partial
current in the coarse mesh —(Z; , while the kernel Rg(g-a—rs)
gives the outward partial current response due to diffu- o
sion of neutronngenerated in all kiﬁds of sources within
the coarse mesh. 2/ .

In thisgltefnathe formulation of the response matrix
method the definition of the kernels.Hik(ré —> rg)i
i,k=1,...,N_, is maintained and the relaEZﬁnsh;; given
by equation (2.2) remains unchanged.

'The neutrén flux in the coarse mesh /27 will then

be given by

T — .
é.(/_()=’j‘£2[/wi //_(;»g) T (2 )d s

(2.5)

*[Q M) 5 ()

-

where the kernels Mchrs~ﬁ§£l and M?(E'—é~£) are generated
as byproducts during the generation of the kernels
mi'(ré._y rg) anlei(E -a—rs).

RS-, e
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The formal soiution of the respohse matrix method is
represented by the equations (2.2), (2.4) aﬁd (é.S) in the
alternative formulation versus equétions‘(z.l) and (2.2) for
the conventional formulation described earlier.

The response matrix ﬁethod'is’applicable'whenever
J (r§ _» rg) and

the kernels are computable, especially Ry

—

m?(g —» rg). The kernel Hyy (rg — ¥g) may impose some
difficul;;es for loose systems—gﬁt f;; coupled systems

which comprise mést of the practical problems in reactor
calculations only interface continuity conditions across

the boundaries of the coarse mesheg may suffice and the
kernel can be generated without any difficulty. The genera-
| tion of the kernels Mg—(rs_;fg) and Mi(g'.a. r) is solely
dependent on the computazzonal écheme'used to generate

the kernels Ri (ré — rS)'and mi(g —> Irg) and as such does
not represent én_;adit;;hal computatio;;.burden.

The present Investigation is developed on the basis of
this formulation of the response matrix method because it
is in a form suitable for use in the eigenvalue problem
and can also be used for the fixed source problem.

The mﬁltigroup eigenvalue problem can be tfeated as
being composed of multiple fixed source problems, where the
source includes any type of neutron production, including

the fission source scaled by the multiplication factor.

Since the kernels depend only onthe diffusion coefficients
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and the ‘absorption cross section the response matrices

need be generated only cnce.

2.3. Numerical Approximation

The formal solution for the alternative formulation
of the response matrix method may be obtained by solving
equations (2.2), (2.4) and (2.5). However, the implemen-
tation of the response matrix method on a digital éomputer
requires various apgroximations to allow the equations to
be numerically'manipulated. | :

One approach whiph.is utilized in the preéeﬁt investi-
gation is to use a weighted residual method to approxiﬁate '
the response matrix equations in a form which is amenable
to numerical computatiodn,

Let a coarse mesh —2( contain L nodes conveniently
located within' its volume —2/ , and define the polynomials
‘E;(r), {=1,...,L, with unitary value at the node £
and zero at the remaining nodés. Also let a coarse mesh
L2/ conﬁain K nodes on its boundary J.2, and define the
polynomials 'gfgkjrsl, k=1,...,K, with unitary value at
the node k and zer;_ét theAremaihing nodes. It should be
noted that in the present discussion the term "node" cor-
responds to a point, not a region of the problem domain.

The partial curreﬁts, the neutron flux and the neutron
éource can be approximated for each coarse mesh _JZ? : by

an expansion in the,appropriate'basis polynomials
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(i.e., boundary polynomials or volume polynomials)

z A - |
j/@) =ﬁ-Z.l\ LZ?{ 15(/_@) / ’_ff écf—@’; _ (2.6)
| S & g |
& (2 ."'gj g% g(j/ﬂ , XedZ, (2.7)
I - |
e
ST o T
z-(fl)r.lé M-?; %) % e 2 , (2.8)

where J% ,‘i%( and Sif are the partial currents on the
boundary node k, the neutron flux value éndithe neutron
source value at the volume node 4/ . respectively.
However, the partial currents J}Lrs)are defined
according to the orientation of .the«n;;ﬁal. g(rs) on the

boundary: Since n(rg) is discontinuous along the'edges
or on the corners, let—;he boundary poiynomials jg%sk(rs),
k=1,...,K, xg e-Jl%n i=l,...,N, be defined piecewisely——
such that t;; discontinuity of J%(rs) on the corner or
along the edges aré explicitly acc;;nted for.

The expénsion coefficients J%k(rs)' i=1l,...,N;
k=1,...,K, can be determined by requZ;ing the residuals of
the approximation of.equation (2.4) and equation (2.2) to

be orthogonal to the set of surface polynomialé j?;k.(rs),

k.=l,ac¢’Ku
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From equation (2.4) the residuals can be defined as

K
gi )= 2 T ) Ty
. é:/

S [é 7083y |4

), Fiteon)[E G,

(2.9)

1=1,..., N e g s € @2,

and requiring the residual to be orthogonal to

i;%:(fé),k'=1,...;K, one obtains

+ -

Tﬁﬁ.é‘zﬁ-‘f VA

A £ £ (2.10)




where

T - (£, % %),

© kY, k=1

yee+9K, is a KxK matrix,

.ﬁ’;/};fﬂ?f;@ o) T g

k',k=1,.

yK, is a KxK matrix,

_ﬁ;/gfi f?/z}f\p/ze/é)ﬁf)a’ﬂa’/z)%y ,

s S

is a KxL matrix,
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If mi and Ri are redefined in order to incorporate
(]

7%5?; » equation (2.10) can be written as
+ 5 - ¢ : -
J;- :@i’ L (—']‘;‘ 7‘" E, .‘——9'-1-. . . (2.11)

Similarly from the equation (2.2), defining the resi-
duals and requiring them to be orthogonal ﬁo % ik&rs),

k'=1,...,K, one gets -

N
. - *
Tog F =2 Hy | o
;-:l — - ’ :
/'#[ .
wher
" ol Sl Vi

i,j= 1,...,K r éf_Q,,r éJ_Q/ ;is a KxX matrix,

and redeflnlng,Hu. in order to 1ncorporate 7i?i?;

X - _
{;, ___Z// . J (2.13)

For the coupled systems, however, the matrix E}j can be
easily incorporated in the computational scheme simply by
reindexing the outward partial currents, and no weighted
residual calculation is needed.

The neutron flux expansion coefficients i&I ’

/=l,...,L, can be determined by requiring the residuals of

the approximation of equation (2.5) to be orthogonal to all
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the functions _Z:(_r;)‘, j’=l,.._.,L,LT et/
.J." _ 5

where-Z;Z}; =/£ ’@’,/ﬂ/vg‘/gjﬂ/{%ﬂy //,,/-:4 .
| is a LxL matrix,

M =0 B TN o) T (1)t ),

J'=1,...,L; k=1.,.,K, is a LxK matrix,

;‘ (L L T O (o) Gt a'ely),

oy 24

j/,( =1,...,L, is a LxL matrlx, and

@ w/((lllé/z/"/gL)

(2.14)

-4

| and redefining MM .and M in order to incorporate 7‘;77

e
—

one gets =

<

J'-' -—

Ix

(2.15)

The compact representation of the equations (2.11),

(2.13), and (2.15) can be ohtained by defining

1 ‘t # z .
sz/(j; ) ‘J_; /,,,/Iv) , a (KxN) wvector,

@=@’/(@ _@;/,,,/ fﬂ) » a (LxN) vector,
= L) EL =/ ' |
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_§=50/K2/ é/,.,/ Y ) o | » a (LxN) 'vector,

a—
— .

and reWriting the equations as

A
‘t"" v

P ¥ : r 4
]_:/K \Z 7“_/5 _5: ‘ (2.16) (2.2)
_J_""____/_/ J (2.17) (14

Y
I%

where

N

,is a (NxK)x (NxK) matrix,

7T 7 T f/
RE g (B, ... B )
£ s s
/i) =a§%@j@, /ﬁ) , is a (NxK)x(NxL) matrix,
M{oé&g (Mf/ /WZJ;.'../ /W;/r/ , is a (NxL)x(NxK) matrix,

Mi dg /Mj‘i /J/Z! /M;) , is a (NxL)x(NxL) matrix,
= —_— —_—_-**/.. " == )

and //L/is a (KxN)x(KxN) matrix, which for coupled systems

A—

is a matrix composed of block permutation matrices of

dimension KxK, and also incorporates the boundary condi-

tions of the domain (2 .

C .3
f'_([ +ﬁ§ o (2.18) (2.5
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Equations (2.16), (2.17), apd (2.18) are then the
weighted residual formulétions of the original response
matrix equations (2.4}, (2.2), and (2.5), respectively,
and are inla form suitable for numerical solution, as will

be described in the next section.

. 2.4, Solution Algorithms-

The solution of the féSponseAmaérix method represented.
by the equations (2.16}, (2.17) and (2.18) requires only
one type of partial current, éither gf or gf; to be
determined.. By inserting the equaﬁion (2.17) into the
equations (2.16) and (2,18) the problem is gi&eﬁ as -

. - Py
R
(

2.19)

TfYT +FE 7
(’l VZtHU)‘Rﬁ’

@:ﬁ‘”.(lf +:—M$-§ (2.20)

——

o)
=)
O
P
rh
T
o
3

4—N =) Is invertible, where I is the

(NxK) x (NxK) identity matrix, the solution can be directly

obtained as ) -

L (1 -FH) KRS .

For practical problems the dimension and the

complexity of the @f’»ﬁ,matrix imply that direct inversion

is impractical. The alternative is the use of iterative
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methods, such as the Jacobi method, the Gauss-Seidel
method, or the Successive Over-relaxation methcd. ('2‘4’)
The convergence of the iterative methods can be

guaranteed if the spectral radius of the iteration matrix

PETH) <L

In terms of more accessible quantities, the infinite

norms, the sufficient condition is

| £ 1< 1,

and for a compact system with no incident current on its

boundaries, VIH ”5 1, the sufficient condition is

1 l< 0. -

Recalling the definition of R°

, the sufficient

condition now ‘is

| /Z'wa< Y, , for all i=1,...,N.

The general solution algorithm can be given as

Step 0 - Guess arbitrary non-negative g_"(O) and'_s_("O) :
+#) 2, £ ~lt) h
step 1 - J = ﬁy'_[ +K-% =42,
Step 2 - J_(ﬁ'—’ﬁ'!ﬂt} | > yr=d, &, .-
— —_—= ~{} 5 (,z -1} ﬂ~ 74 /"
step 3 - F7 = T T +MEE
Step 4 - Update §'F)from L
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Tt should be noted that the above algorithm does not

depend on the construction of the basis functions, except

that fhéy have unitary value at the'nodes they are associ-

ated with. In addltlon, the above formulatlon is formal

in the sense that the response matrlces/ﬁ, and 4§1 were

given in terms of the response kernels ﬂi @ -.>-/75) and

ﬁﬁfﬂg->.@g) ,which have been defined
sense via equation (2.4). As will be
chaptér, the finite element methoa is
local (assembly) level to generate the

used in the global.solution algorithm

in only a formal
seen in the next
employed at the

response matrices

outlined above.



CHAPTER 3

FINITE ELEMENT RESPONSE MATRIX METHOD

The previous chapter presented thé general formula-l
tion of the response matrix method and a description of a
weighted residual approach to cast the resultant response
matrix equations in a form suitable for numerical approxi-
mation. The discussidn was gquite general and did not
depend on the exact form of the approximation polynomials.
In this chapter fhe specifié method utilized in the present
investigation to determine the respohse matrices is
described. 1In particular, the fiﬁite element method is
employed to solve the one-group diffusion equation in the
coarée meshes,-thereby generating the response matrices.
Therefore, the coarse meshes are assumed to be composed
of materials with~propérties compatible with the assump-
tions of diffusion theory: the absorption cross sections
are expected to be -relatively small compared to the
.scattering cross séctions. This assumption is easily
~satisfied in most reactor problems since the coarse meshes
are usually defined over an entire assembly or part of
an assembly, where heterogeneities are homogenized and the
assembly (or partial assembly) is treated as one material

with equivalent homogenized cross sections,

34
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3.1. Galerkin Formulation

The one-group diffusion equatidn is to be solved in
each of the coarse meshes _C%, n=1l,...,N, (the assembly

level calculations)

_VREVE () + Za, (D) () =50 ()
=1, 000, Y, Ze 20 ,

where D_(r) is the diffusion coefficient,

(3.1)

Z?an(g) is the total absorption cross section,
s,(r) is the source term,
subject to the irradiation of inward partial current

j;(zil on the bdupdary ‘£k%n’ |
: (s¢)
W)= 5 400) + 40,0974 )], - 20%) s e 42z,

where n(r.) is'the vector normal to the surfacecﬁﬂQ,,
and to‘i;;erface conditions of continuity of current
and flux.
In order to formulate the Galerkin approximation, or

weak form, of the problem the space of trial functions is

defined as

%fs 2/5%) ec Jm /i v;%) 175%}% W) %/ﬂ/j < “’j s
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and for £(r), g(xr) € Hé the'inne;: product is defined as

(44) = L Jr)gx) 4z

and the boundary inner:product as

<A9>= Jﬁ; F1m) )

Multiplying the equation (3.1) by an arbitrary element
of the trial function space H‘zt . <;ﬁ(g) , and integrating

over ’O‘m , one obtains

- f VMV ) (1) +f z wqf i)l =

(3.3)
/5 (ﬂ)%(/z)a/ﬂ .

By Green's theorem the first term of equation (3.3)

can be written as (details in Appendix II )

- [V v )% (i - %@, DT Vi i)l
(3.4)

f 2) V;é /z)/ /m) .

Now use the boundary condition (3.2)

274 @) -ole) =24 1m) -1 ()

L=/l
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and insert it into the last term of equation (3.4) to

obtain

VDb ke - 307 1)V hl)

(3.5)
+ ji, # (%) ¥ )de -2 jigf;@) (m)dss

Now combine equation (3.5) and equation (3.3) to

obtain the final result, Q(¢f‘\bh \

ém 2,(n) 7 /47/17}5,/4/ a +42.; (2) % tn) Y o)

(3.6)

+44 4051 (0) 1 - Lontn) 2%

72 f /ffr) o (K ) A s

The solution gbnkg) to equation (3.6) which is wvalid
for all %;(£)§§ Hél is the weak solution to the original
diffﬁsion equation. Note'that the original boundary con-
dition, eéuation-(B.Z), is ihcorporated directly into.
the weak form and hence is a natural boundary condition.
That is,the space Hzl doeé not need to obey the boundary
condition in order for the weak sqlutién to satisfy (in a

weak sense) the boundary condition.
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 Defining the bilinear functional

() = L 2wvd i) da

[E b 4 f bt

the Galefkin approximation can be succinctly written_
. 7
0‘/@/%)3/5»7/ %j-f-Z(jm/ ) /,},,[j EH - 3.7

The same result could be ob%ained by’miﬁimizing the

quadratic functional

At )-| by 2 (0919 25, 0) U

’Lz‘/f[%’/ﬁr)%/&)fa/{g bl
-@' .

The proof is presented in Appendix II.

3.2. Finite Element Solution

_ The weak form, Eq. (3.7), of the diffusion equation
is in a form suitable for solution by the finite element

method. Specifically, the Ritz approximation is utilized,
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in which the trial functions 2& belong to a particular

finite-dimensional subspace Sh‘contained_in Hzl,

f,’( e S*c 4!

In order to cohstruct the finite element subspace sh,
the coarse mesh domain .-, is partitioﬂed'into M sub-
domains, —(2,,, , m=1,...,M, and the elements of st are
polynomials defined over the subdomaihs;&%m,, m=1l,... M
which are contlnuous across the subdomain boundarles.

'Also let the Qomaln contain N, nodes, and define 9” (),
i=l,...,Ne, %Lﬁ & Sh} functions with unitary value at
the node i and zero at the remaining nodes. ~The Lagran-
gian finite element method is characterlzed by choosing

as ypﬁ/h) , the contlnuous plecew1se polynomials. These
polynomials are the basis functions for the subspace Sh:
since every member of Sh‘can be given as a combination of
the }%(gg).

If the solution §é1(£) is then sought within the
space sh, 42(5) can be expanded in the basis functions

for Sh‘as

#ly- Z .0l -

The Ritz-Galerkin approximation is obtained by in-
serting the approximation (3.8) into the weak form (3.7)

and requiring (3.7) to be true for all basis functions
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A . .
%7(/. (£), 3=L1,... N s

o (2 4, 10 - (o ) 2< L Bl

for all j=1,...,Ne, or

Ne : | | |
g 2’ Q/%f%/):év %fy + 24, %/) , B39

for all j=1,.. e Ng .
An identical result may be obtained from the varia-
tional principle, as shown in Appendix II, by searching

for. the stationary point in the space Sh',

;%F/g//g//=a p j=1,...,.Ne . |

which is equivalent to minimizing the quadratic functional
discussed above.

4
Defining the vectoxrs @ and %/4} as

— —

zs’”_ :W//éll/ éiz/"'/ g:ﬁ’e)

W=t (8l), 6l0s), .., e (2)

Equation (3.9) can be rewritten as a matrix equation
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_/_li_ f _f/,u/ﬂ/}b' (3.10)
Where/4 //a;/, // i=1,...,Ng »

_gﬂ‘ﬁ': /.S',,,/ %4/4// 3
1= 2<do, B>

The linear matrix equation (3.10) can be solved

either by direct inversion or by iterative methods as long

. as A is invertible.

If An is p051tlve deflnlte, X- A x.>>0 for x#0 then

==

A, is invertible and equatlon (3.10) can be solved.

——
= ,

e

can be shown to be positive definite as follows.

Assume qn'arbitrary‘ <XAZZ} 5'5;4 and expand
y :
£
)« 2 ol
A=

Now from the definiton of the bilinear functional

c{(/,,’,/: %j} from Bq. (3.7),

a (o(’{/d_)/ o('//g))>0 7D, /4}?0,2;,/.4)2/0 :



42

But
' Me
Cl(/QKéZZ)/ O<7€QZ&) X 42—13( 25 42?1%3}}%;fi)
P Z (ot
*}5?}2?;( a(eeu {) L/
:g_(-,i,,-ﬁ 7
and
B_{ai,‘o(>d
if
X =l (et o, ) Xy ) # O

which is the desired result

Therefore A is positive
definite, thus invertible.

Since A

I

is invertible, the solution can be expressed
as

RS Ny

(3.11)

and the flux in the coarse-mesh (7 is from (3.8),


http://C3.ll
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?ﬁy%ﬁ%)]?ﬁ;gj +/ﬁ4/4-)/-ril.,é?— 'w

3.3. Response Matrices Generation

In order to genéfate the response matrices from the
solution (3.11) it is necessary to expand the response
current, which is the outward partial current 5n+(:sli in
an aépropriate set of'basis functions. 1In additiogj it
is necessary to determine the source term -sn(z) and the
inward partiél currentij;(rs). — -

The outward partial cEZ?en{ j:(rs) is expanded in
piecewise polynomials defined on the—;oundary of the
coarse mesh cﬁi? . Since j;(rs) is defined as the partial

——

currenﬁ in the direction of the vector n{rg) normal to the
boundary Cﬁkzm ; it is necessary to exclagé corners or
edges of Jl2”7 » where n(rg) is discontinuous, and allow
j;(rs)-to be discontinuousf;t these points. Then the
pol;;omials are continuous only along each side of JCan
for two-dimensional problems, or continuous on each face
of C[JZn for three-dimensional problems.

Let the boundary CEIZM contain Ng nodes and define
%g[(ii), i=l,...,Ng, %aﬁwfffz, functions with unitary
value at node i and zero at the remaining nodes. For

convenience the zgnj(rs) are chosen to be piecewise.

polynomials, continuous between corners or between edges.
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Therefore the outward partial currenﬁ can be expanded

in the boundary basis functions,

/ /1;) [g/&)/réf | (3.12)
'where '

Sﬁ,,/ﬂs/ w(/ L ). L 1) )

C”//Jﬂu -/ /n:r:/"”/ %’Z’) )

The source terms (r) and the inward partial current
j;(rs) from the assembly calculation can be equated to the

sourceSrJE) and inward partial current J;(rs)‘in the

global calculation as follows

5m(£)= [Z(/f)/?g_, o (3.13

and

o Ee)E e

where "f’/{_]) — @{/?17-{()/ sz//fj/ eey —?/j/ﬁjj J
o L= at(Lin) G ), T in )

are the global volumetric and boundary basis functions,

. respectively, and S_ and J_ are defined in (2.10).

——
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Inserting the expression (3.13) into the definition
of jaf in (3.10) one obtains

Cw(o“

or

where

- (40, [#1]")

is a NgXL matrix.
Similarly, inserting expression (3.14) into the

definition of d/#”' in (3.10) one gets
e m .

5 = Z{(ﬁ/@s}/[f//_’djTé‘) |

,
™~

or

(3.16)

2l 4y

pi—4

N
*

P
—_—

=< 4)[zmj>

where

?ﬂ

is a N xK matrix.
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Finally, inserting expressions (3.15) and (3.16) into

equation (3.11), the flux can be expressed as

= . . ' (3.17)
Qé? I Tﬂé*ﬁ@ﬁ“_g - |
Since the desired quantity is the outward partial

current j_(rg) on the coarse mesh boundary, one uses the

diffusion approximation for the partial current,
(3.18)

ST ) -2 ) ) 2t

Approximating j;(rsl and Qb(g) by expansion expres-

sions (3.12) and (3.8) , respectiveiy,-and defining the

residual /9(rs) as

7 4 / 7 ”
70//_75)=[%4//_&}]/ -7 /-%"/{3}/ 2 (3.19)
v £00)V[ ], 2ts0)-

the outward partial current coeff1c1ents

l‘%~

7

can be ob-

S+

3
be orthogonal

g l

tained by requiring the residual /Q(rs)

to the %4 (rs), i=1, ..,NS,

W) [Wm)] >4 = 4<thm) [t &

(3.20)

AL ), 0 o)) o) - ¢

/( ”;



47

Defining the N XN matrix

and the Nste matrix

gy =< ‘_Kj//g) / D/’_Cf)[ ALY 7 - 2/m),

=y

equation (3.20) can be concisely given as

. ',4-‘ / T
Tt d {17 Sl o

s
—_— e

Inverting the positive definite matrix T%% and

o

substituting _?_b from equation (3.17)

or

* s . T
I = - S, K, In (3.23)

where _
’ ot

is a NSxL matrix,
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and

-1

v / A -4
BTt 2~ Ty " o

is a N_xK matrix.

0
sqn

The response matrices R> and connect the assembly

|

)

level outward partial current j:(rs) to the global neutron

—

source Sn(E) and global inward partial current J;(rs) ’

respectively. However, what is desired are global response

matrices lR?1 ‘and IRg which connect the giobal outward

e

. +
partial currents J (r_) to the global neutron source and
inward partial current. These can be obtained by

expanding the assembly lével outward partial current j;(rs)

in the global basis functions - S_D_% (rg), k=1,... ,K;

Ege!ﬂm, as

/,,;‘@:%Zg/m; . e
=/ .

But equation (3.24) does not have a unique solution
J:;k, k=1,...,K, ibecause j:(rs‘) is expanded in a more re-
fined set of basis. function:(the assembly level basis
functions versus the global basis functions ?;’é (rs).
Therefore, equation (3.24) will be ‘satisfied in a ;r_e.ak
sense by applying the weighted residual method.

. . .+
Recalling the expansion expression (3.12) for jn(rs)

and defining the residual 'g (_rs) as
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ay-[ )] g - [B ) =

the global expansion coefficient J+ can be obtained by

requiring the residual f?(r ) to be orthogonal to the

‘_(,Z-;(r), k=1, . ..,Kr écp_g

7 /e , —~  (3.25)
Tt % = 1oy = 47 5y 857

d

~

where

fry: = (f }4/ f/‘”’) Sk k= .1,...,K,

is a KxK matrix,

@ 44_(2",@/’-"‘)%/7@/“’@//' =Ty K

j=1,...,¥Ng,

is a KxN matrix.
Substltutlng j from expression (3.23) and inverting

the positive deflnlte matrix 7;%;@F' , one gets

+ e T -
@:@_gﬁ +@,<_]_;_ (3.26)

—

where
4 ' 5
= loz - lzy -

S
N

1Y,




and

\\ %

T - T
7 7;2? .7:?,'% '__@

are the desired response matrices for the global partial

current calculations.
. . ' J=
The construction of the response matrices __bgs and M-
for the global flux ?:,, can be obtained from equatioB

(3.17) by expanding.the local neutron flux gbn(z:_) in the.

global basis functions le (r), 1=1,...,L; 7€ Sy 2

Din)= [f (z)] .T@

Again the expansion coefficients ~¢,,,' must be
obtained by the weighted res:.dual technique, and s:.nce
¢ (r) is given in terms of the basis functlonssa //

one obtains in a s:.mllar manner,

@'J@jf@??_n - (3.27)

Ty-Td  aets ~
where /FY = WYf , defined in the equation (3.153),

nd Tgy - /f sz/ﬂjzﬁ/n/q//r)// /1,101, ..., 5.

Substituting the equation (3.17) into the equation

(3.27)
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. 5 J_— —
S=tly- 5+ My
where
b 7"1 -4
My =2 15F [TV M- [pw
and

are the desired response matrices for the global flux

calculations.



CHAPTER 4

COMPUTER IMPLEMENTATION

4,1. Basis Functions

The global basis functions for the neutron flux
expansion and for the p_artial currents expansion in the
reactor problem were defined in Chapter 2 for coarse

meshes 2, , n=1,...,N as

KZ/E) =1, Lz €L,

and
. f;(@') _ /4:1,...,K;rjef_Qm , , respectively,

where L is the number of indexed nodes on t-hé coarse Iﬁesh
_.Qm , K is the number of indexed nodes on the coarse
mesh boundary Jﬁm , and the number of nodes, L and K,
is dependent on the degree of the polynomials desired in
the coarse mesh and on its boundary, respectively.

In the present investigation the geometry of the coarse
mesh was éhosen as a rectangle, since most of thé practical
problems in the reactor. calculations can be solved with

this geometry, but extension to the triangular geometry
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does not impose any conceptual'difficulties.
In a rectangular coarse mesh a simple scheme to

generate the polynomial elements, ¥ /ﬁﬁ/ f=1,...,L,

of any degree is to form a direct product of univariate .

Lagrange polynomials, e.g., a (m+n)th degree element

/x/y) q/ (x) /

where
] (-%r) AT
Vi =/ A
)= e
m : ”
’ /7 /7/—2;1/) o ZZ;/”‘{/ 'J‘/m')
iy s

and bﬁjyj) are the coordinates of the.node‘f' .

However the product of high order Lagrange polynomials
results in a large number of internai nodes and tends to
preserve very high order terms while neglecting soﬁe lower
ordexr térms.(Ag)' |

A polynomial generation scheme'which preserves the
low order terms in the high degree elements generates the

Serendipity elements. (48 49)

Figure 4.1 illustrates the
number and the lOcation of nodes for quadratic and cubic
Serendipity elements.

It is convenient to define a local coordinate system

for the polynomials and- simplify the calculation of
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integrals which are transformed from the physical,coofdinate
system to the local coordinate system. A convenient local
coordinate system for'rectahgular elements may be defined

by the following transformation,

o (x-x)/a oy -y )/l

where (xo,yo) are the coordinates of the center of an
arbitrary rectangle, and a and b. are the dimensions of

the rectangle.

" In the local coordinate system the guadratic

Serendipity elements are

Til50)= 5 (4475 )L+ v (377 + 797 -4) »

i=1,3,6,8;
V(5 0)< £02-7) L4y )
Ci=2,7;

Vilsw) = L(1e 55 )(L-9%)

i=4,5;

where ('7k/2h') are the local coordinates of the node 1i.

Similarly, the cubic Serendipity elements are

1};/}5’77)=}é— (H}g-)/ffﬁ%)[‘;/ﬂ + 7&3’317‘7]/

i=1,4,9,12;

U 'l { ' " oeE NUCLEARE&;{
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o 7 R 9 10 11 12
Te | Jp8
40 .35
S‘T r6
% l3 1T 5 4
(a) L=8 - (b) L=12

Fig. 4.1 Nodes for Serendipity elements,f{(f/};/,
(a)quadratic, (b)cubic.

ool = Toce R _9' 8
14 ' 7
114 b5 ‘T
154 6
124 _ba 164 5
'
(a) K=12 (b) K=16

Fig. 4.2 Nodes for Lagrange polynomials,‘f;@ [[(__;),
(a)quadratic, (b)cubic.
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Gl <L (10370199 (4+ P 9,)

i=5,6'7'8;

Tlr0)= 3.72 (/+ 7}/5)(/ 72 (1 + 77/) y

i=2,3,10,11 .

The basis functions /.(p;&.(_.rs‘), }.<=l,‘...,K, for the .
partial currents expansion on th_e—coarse mesh boundary J_Qm,
is defined on each side of the rectangle as Lagrange
polynomials. The corners are not included in the defini-
tion because partial currents are defined accordingAtvo
the normal vector Orienta;\:i‘on, and the normal vector is
not defined on the corners.

Figure 4.2 illustrates the nodes on the’ bour;dary
of a coarse mesh for quadratic and cubic Lagrange poly-
nomials.

The quadratic Lagrange polynomials in the local

coordinates system. are

Ve trloss) s

where },‘ is the abscissa of node i on the faces( :((/i'.i) '

—K/)j—: (1-74 y 152.8
7:7”/3—”/”7/‘//*’77’/‘71'/ , i=4,6,10,12,
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where 07/ is the ordinate of nofle i on the faces ( 3_’;[, /}7 )

- 'ﬁp,;/fn}:(/—oyz) . i=5,11

/ 7

The cubic Lagrange polynomials are

V)= L (1457 )(75%1) | ima,a,512,
_52;/}73%/17‘ 7}7,-}//-77 , i=2,3,10,11,
@/”/’/‘/;(/*7/47/)/7’772-/) , i=5,8,13,16,
?Jﬁ/:];//* ?7?7,-//1-/72) , =6,7,14,15.

The basis functions to be used in the generation of
the response matrices were defined for coarse meshes ..Qm ’

n=1l,...,N, in Chapter 3, as

1
%,-/ﬂ) yi=1, 0. ,Ney2 € 2, ,

and %géfy) yi=1, 000,826 2, ,where N, and Ng are the
number of volume nodes and boundary nodes, respectively, of
{2, . The %i /_/!) and %{m{ /%) basis functions are
used for the neutron flux expansion a;nd for the partial
current expansions,respectively, in the assembly level

calculation.
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1718 29 21=Ne

4e 1 fl 6

g WS CHES N

5{. % '3
1L —3 % 5

(a)nodes for %u- (r),i=t1,...,Ng

13 12 1

]

Fig. 4.3 Nodes for quadratic Serendipity elements,
V’f (r), and for piecewise polynomials,
}/;14‘ (ry), in the coarse mesh _2m
subdivided in 4 subdomains _(2

m=1,ooo’4"

‘(b)nodes for }‘;"ﬁ[(rs),iﬂ youe N

mm ?
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To illustrate, Fig. 4.3 shows a coarse mesh )
divided in M subdomains, _Q,,,;,,, , m=1,...,M, together with
the volume nodes for quadratic Serehdipity elements
(flux expansion) and boundary nodes for quadratic Lagrange
polynomials (current expansion).

The basis functiong %7/. (x) | have the vaiue unity
at node i and the value zero at the remaining nodes, and
‘]pm/ (r) is defined on tﬁe subdomains over which .the‘ common
node i is defined. Within each subdomain the basis func-
tion %1' (r) is a Serendipity polynémial as defined above.

"The basis functions %;{"-(rs) are each defiﬂned on
only one side of the coarse mesh, ;J-Ith the corners repre-
senting double nodes, one for each side. This is consistent
with the behavior of the partiai currents at a co;:ner,
where a discontinuous change in the outward normal n(rg)

occurs. For convenience Z,D (rg) are defined as piece-
mi i

wise Lagrange polynomials.
For illustrative purposes the response matrices

defined in equation (3.31) were generated for a typical

(47)

light water reactor. using the basis functions defined

above. Table 4.1 and Table 4.2 contain the response

-—

7 s
matrices %Z, and //?,,,  respectively. Figure 4.4

—
—

illustrates the outward partial currents due to a flat
inward partial current incident on one face of the coarse
mesh. Figure 4.5 shows the outward partial currents due

to a constant neutron source within the coarse mesh. The
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Table 4.1 - éf} for 2D-IAEA benchmark problem(47)(zone 1,

J =1
4.3352E-02

5.2577€-02"

-4.8625E-02
-4,9940E-02
9.2669E-014
~6.5670E-03
~8.0094E-05
3.2142€-03
2.3023E-03
4.8696E-02
1.7200E-02
3.6101E-01

7
-8.0069E-05
3.2142E-03
2.3023E-03
§.86%90E-02
1.7200E-02
3.6101E-01
4.,3351E-02
5.2577€E-02
-4.8624E-02
-4.9940E-02
9.2672E-04
-6.5671E-03

group 1) in quadratio basis functions

k=1.--oo"2s

2

1.0101E-01
2.6U63E-01
1.0101E-01
3.0302E-01
5.9121E-02
2.3907E-02
6.1030E-03
1.8764E-02
6.1031E-03
2.3907E-02
5.9121E-02
3.0302E-01

8
6.1029E-03
1.8764E-02
6.1030E-03
2.3907E-02
5.9122E-02
3.6303E-01
1.0101E-01
2.6463E-01
1.0101E-01
3.0303E-01
5.9122E-02
2.3907E-02

3
-4 .8625E-02
5.2577€E~-02
4.3352E-02
3.6101E-01
1.7200E-02
4.8690E-02
2.3023E-03
3.2142E-03
-8 .0087E-05
-6 .5670E-03
9.2669E-04
-4 .9940E-02

9

2.3022E-03"

3.2142E-03
-8.0073E-05
-6 .5671E-03
9.2672E-04
-4 .9940E-02
-4.86620E-02
5.2577E-02
4.3351E-02
3.6101E-01
1.7200E-02
4.86950E-02

L I
4.6690E-02
1.72060E-02
3.6101E-01
4.3351E-02
5.2576E~02

~4.8624E-02
~4.9940E-02
9.2667E-04

-6.5671E~03"

~8.0100E-05
3.2142E~03
2,3023E-~03

10
~4.9940E-02
~6.5670E-03
~8.0094E~-05

3.2142E-03
2.3023E-0)
4.8690E~02
1.72002-02
3.6101€-01
4.3351E-02
5.2576E-~02
~4.8624E-02

Wylro)s
5 6
2.3907C-02 -6.5671E-03
5.9121E-02  9.26T1E-04
3.0302C-01  -4.9940E~02
1.0101E-01 -4.8620E-02
2.6463L-01  5.2577E-02
1.0101E-01  4.3351E-02
3.03036-01  3.6101E-01
5.91220-02  1.7200E-02
2.3907E-02  4.0690E-02
6.1031E-063  2.3023E-03
1.8764E-02  3.2142E-03
6.1030E-03 -8.0084E-05
1" 12
3.0302E-01  3.6101E-01
'5.9121C-02  1.7200E-02
2.39070-02  4.8690E-02
6.1030E-03  2.3023E-03
1.8764E-02 - 3.2142E-03
6.1031C-03 -8.0092E-05
2.3907C-02 -6.5671E-03
5.9122E-02  9.2660E-04
3.0303C-01 -04.9940E~02
1.0101E-01 ~-4,8525E-02
2.64630-01  5.2577E-02
1.0161E-01 4.3351E-02

09



J =1

-2.1499E-01
-2.4938E-01
-2.9444E-01

6.3410E-01

s X
Table 4.2 - K4 for 2D-IAEA benchmark problem'47)(zone 1,

2
5.0921E-01
2.2U08E+00
5.0922€-01
9.2104E-01
1.1206E+00
7.9579E-02
2.0479E-01
T.4403E-01

- 2.0479E-01

7.9578E-02
1.1206€£+00
9.2105E-01

group 1)

3
~2.4938E-01
~2.944U4E-01

6 .3409E-01
6 .3U09E-01
-2.9444E-01
~2.4938E-01
-2.1490E-01
-4,.5291E£~01
-9.3159E-02
-9.3160E-02
~4.5290E-01
-2.1499E-01

in quadratic basis funotions
k=1,...,12, and 12;(5).1=1.....a.

4
9.2104E-01
1.1206E+00
7.9579€-02
2.0479E-01
7.4403E-01
2.0479E-01
7.9574E-02
1.1206E+00
9.2105E-01
5.0921E-01
2.2U80E400
5.0921E-01

]
7.9575E-02
1.1206E+00
9.2105E-01
5.0921E-01
2.2488E+00
5.0922E-01
9.2104E-01
1.1206E+00
7.9576E-02
2.0479E-01
7.4403E-01
2.0479E-01

6
-2.1898E-01
-4.5290E-01
-9.3160E-02
-9.3150E-02
-4.5290E-01
-2.1499E-01
-2.4938E-01
-2.9444E-01

6.3009E-01
' 6.3409E-61
-2.94U4E-01
-2,4938E-01

oy (x,),

1
© 2.0U79F-01

7.4u02E-01
2.0479E-01

*71.9575E-02

1.1206E+00
9.2105E-01
5.0921E-01
2.2460E+00
5.0922E-01
9.2104E~-01
1.1206E+00
7.9576F-02

8
-9.3158E-02
-4.5290E-01
-2.1499£-01

~2.4930E-01 .

-2.,9404E-01
6.3409E-01
6.3009E-01

-2.9444E-01

-2,4938E-01

-2.1499E-01

-4,5290E-01

=-9.3159E-02.

19



coarse mesh with 4 subdomains(2x2)
----coarse mesh with 16 subdomains(4x4)

Fig. 4.4 Outward partial currents due to the
constant inward partial current on

the bottom.(a)cubic elements,(b)quadratic

elements.(arbitrary units)
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1 4.
,” \\ 4L3.
,/ . \,20'
1.
N
0.
. 1.
1
2 Vi
AN
3.0 TN A
V \‘_’/

coarse mesh with 4 subdomains(2x2)
- — — - coarse mesh with 16 subdomains(4x4)

Fig. 4.5 Outward partial currents(arbitrary
units) due to the constant source

within the coarse mesh.(both quadratic and

cubic elements yield almost same results)
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results using quadratic and cubic eiements are almost

_ ' . .
coincident, because the outward partial current due to
an isotropic uniform source is not expected to be a
éensitive function of spatial position.

The basis functions %ﬂ/ﬂ)and (7@,;{/ //1) are chosen as

quadratic elements, and the degree of 'approximati'on is
varied by changing the number of subdomains in the

coarse mesh ._Qm .

4,2. 1Inner Iterations Scheme -

The one-group global response matrix-equations for the
reactor problem were given by equations (2.16), (2.17),

and (2.18), which for convenience are rewritten below as

»

=
-

J;KJ-J +://_f‘§ | PRY

— M e

- £

. J— .
E-M"T +MS
For a given source 5, an iterative scheme used to
. .. + -i ] . ’

determine either ] or J is termed an inner iterations
scheme. A convenient form for the inner iterations scheme
is obtained by inserting equation (4.2) into (4.1),

JZE.Z@J++Z£§ . (4.4)

yielding
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(1“173)

(1;3’1)

F
1

P

l\

Fig. 4.6 - Coarse mesh ordering and outward
partial currents, represented by
arrows, for gquadratic elements.

(iyj+1)
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In rectangular geometry it is convenient to change
the subscripts of the coarse meshes __Qm , n=1,...,N,

""’jmax’ such that a coarse

to (lrj)f i=1,... 'imax'; j-=l
mesh (2(i,j) and its neighbors _(2(i+l,j+1) can be
ordered as illustrated in Figure 4.6.

With this transformation the permutation matrix W

can be represented by the. following algorithm,

_*_77/}/'}=_Q °§Z¥1,/7 + 7z - [74}/41)

(4.5)
+,. . +/ ..
+ T - (it )+ Ty =T (42j~2)
’i=l’oo‘o ,imax;j::l,‘-l. ,jmax’
i.— . j [ f ’ - t PR )
where _‘Z/(//)= C’(/‘Z" i)y T2 Cif), ey /‘//)) s
(0 0P o] (0 0 0 0]
0 0 0 af 0 0 0 P
T, = ’ T, = , ’
2 oo oo =2 6 0 0 0
Lo 0o 0 o0 0o 0 0 0]
0 0 0 0] (0 0 0 07
00 Q0 0 0 0 0 0
T = ’ T, = ?
= |2 oo o =2 1o 0 0 o0
0 0 0 O] (0o 2 0 0
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1l
Q for quadratic elements,

o

0 0
={0 1 0

1 ¢ 0 ' o
and for boundary coarse mesh (2 (i,j) the boundary con-
ditions are explicitly included in the calculational scheme
by assessing values for some of the elements of the inward
partial current J° (1,31 (e.g., Jp (i,3j)=0for vacuum boundary
conditiong,where k is a node on the boundary of the
reactor).

The inner iterations scheme represented by the

equation (4.4) can be given by the algorithm

J 7@7=/§/@7-[ 7 _{7/44/} + 7T 7 vy

(4.6)

+7 g? 14+ TV, _j/]+//?/x// S144)

i_':l'.o-,i ;j—:’l,o-o,j

max max”’

Explicit representation of the Jacobi matrix ecjuation
is shown in Figure 47 From the graph theor.y(z) , the
matrix can be seen to be a consistently ordered 2-cyclic
block-Jacobi matrix; | hengé Gauss-Seidel iteration
will converge twice as fast as block-Jacobi iteration. (2)

Therefore the iterafiye scheme adopted in the present

investigation is the Gauss-Seidel method which may be

represented by the following algorithm



I'(1.1)

1<
Nt

'-ZI/ )
| 2740
T 4]

T t5j04)

T lasj)

H

N7 y . -
g Iz, 1) F501,1)
o Tvsy) | |\lrry)
- _ o T * ., S /e -
ﬁ;?,‘/,) oo &r/, )/ Q ﬁj/l/,/j . ew /’//fd"/) 'I [’:/ -2/ ﬁ[’// '-!}
ROl - ,V’///} ﬁ’/w} WAL, I1ig) |+ g5 %,
A 7 v t,, . P
[:’L‘Z;,;// QA,)};/ - ,Z?/ o - ///}*1) <Z //,:/ v/ £s _//‘/'+‘1/
g I7h1;7) [Blie1,5) |
2 J? Dunr, /um’) ) f %wr /'W’)

i (is) = RTes)

/(,// and 7?5/1/// R 1417 )/////

Fig. 4.7 - Block-Jacobi matrix equation.

89
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/x‘/ Sy R
J//// /?//,J/[ +1/) +/z - Jirt)
J'/z—,;} + 77 - f///./ J)]

(4.7)

Im

s t=1,2’3’000

+ K /w) S17 /
where it is assumed that the progression through ‘the mesh
Other progres-

is to the right and down (see Fig. 4.6)

sions are readily treated.

Outer Iterations and Acceleration Schemes

4.3.
The specific application Qf the finite element

response matrix method is the solution of the two-group

diffusion equation, assuming a fission source only in

group 1,

) | |
~VPIa)vdln) + (5 n) + 2,05) B (5) =
) 72:1/’%) G Sindm) < we

- 53_“‘\

T I E )+ (x) B ()=, B L)

where 2, (x) is the down-scattering cross section,
Z:f(r) is the fission cross section for group g,

is
ve oL :
fission event in group g,

the number of neutrons generated per
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and kwis the eigenvalue to be Qetermi_ned.
The formulation of the‘ response matrix methoci

used i.n the present investigation is based on the assump-

tion that the source term comprises all types of neutron

sources. Therefore the response matrices are generated by

considering

S'0)- (708 e) +5%50)F ()
4

as the source for group 1, and

s Z,(2) P(r)

as the source for group 2, such that the coupled equa-
tion (4.8) can be considered was'being composed of ~two
fixed source problems connected to each other by source
terms.

The solution for a fixed source problem has already
been obtained in equation (4.7), where the outward partial
currents £+ due to a specified source distribution § are
obtained with inner iterations. The neutron flux is

obtained by the equation .(2.18) as

| N § 7
@‘7____.&,}[3 -7‘-_*//\_:4—; -g ,8=1,2

where ﬁg is the expansion coefficients for the global
flux @%{_L
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The eigenvalue problem (4.8) can then be solved by the

(2-4)

power method with an iterative scheme known as outer

(50)

iterations or source iterations , which is given by

the algorithm (the outer iteration)

Step 1 -Guess é/ y é /{_7) and ? é"} and compute

. o /) | o
2 2, 20 252 Z '
- (gd b + G E @)
. W

Step 2 - Solve the fixed source problem for group 1,

(the inner iteration)

t-4)

. /;/A J » .
VD) P ;z)-f/ Z;//J/MZ/!/)éj (7)=5""(x)
Step 3 - Calculate the source for group 2,
| | (%)
S - Zol) )

Step 4 - Solve the fixed source problem for group 2,

(inner iterations)

AN
R Ia N %I) + i) (2)=5 U )

CialE Feg F:.
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Step 5 - Estimate the new eigenvalue, -

/ - V 2
7{1 ;; / ; ’/ [Q plﬁf/ﬁ) I (;}/,7)%” 20D “ ) ]a’_/_z
L[5 WF TGt 5 by e

Step 6 - Estimate the new source for group 1,

H / L&) 2 —2(¢) |
2 Z0P
$" )= L |2, ()L, WD %)
T2 7 |

78 '
and iterate, t=1,2,3,..., from step 1 through step 6 until

. rL (4 2t}

the solutions 2@&5@ é&) and k(®) satisfy the
required convergence criteria. |

The matrix representation of the algorithm is
presented in Appendix I.

"In order to accelerate the convergence rate of outer
iterations two acceleration schemes were considered: the

(51)

asymptotic source extrapolation method and the

Chebyshev polynomial method.(52'53)

Both methods are
described in Appendix I. To test the relative merits of
these methods, a two~dimensional 2D-IAEA benchmark

problem(47)

was solved applying the acceleration schemes
to the finite element response matrix method.

Plotted in Figure 4.8 are the results obtained with
the asymptotic source extrapolation method along with the

results obtained without accelerating the outer itera-

tions. The number of outer iterations is decreased, but
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~the number of inner iterations per outer iteration in-
‘creases due to the extra inner i;erations needed in order
to reach the asymptotic convergence'behavior, and the total
computational time is increased.

A similar comparison of the Chebyshev polynomial
method results with the results obtained without acéelera-
tion is shown in Figure 4.9. In this case the number of
~outer iterations in the acceleréted calculations is
decreased without the increase in the number of inner
iterations per outer iteration observed with the ésymp—
‘totic source extrapolation method. The net result is that
the ovéfall computational time is effectively shortened
by about a factor of 2.

Therefore, the Chebyshev polynomial method was

chosen to accelerate the outer iterations in the finite

element response matrix method.



CHAPTER 5

EVALUATION OF THE FINITE ELEMENT RESPONSE MATRIX METHOD

Tﬁe evgluation of the finite element response matrix
method was performed by application to two types of reactor
problems: a fixed source éroblem’and two eigenvalue
problems. .

The fixed source problem consists of an . idealized bare
homogeneous core,.and the eigenvalue problems are two
benchmark problems that have been used for testing various
. coarse mesh methods. X

The computations were performed with the Amdahl-470/V8

computer at the Computing Center at The University of

Michigan.

5.1 Fixed Source Program
The simplified reactor used for the fixed source
calculations is a 200cm x 200cm bare uniform core composed

of materials typical of a light water reactor.(so)

A
constant neutron source was imposed and only one energy
group was utilized. (The one-group constants are shown
in Appendix IV).

It is recognized that a bare uniform reactor is only

of academic interest and should not be used in a test of

76
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a coarse mesh method; however, the main objective of this
effort is to investigate the effects of varying several of
the computational parameters,such as therconvergence cri—
teria for the inner iterations, the maximum number of inner
iterations, the degree of polynomial approximations for the
partial currents, and the number of subdomains in a coarse
mesh. Experience gained from these parameter variations

- may then be utilized in the more practical benchmark éro-
blem calculations. The exact analytical solution for the
bare uniform reactor obtained by Fourier series expansion

" is taken as the reference solution for the comparison of
the results.

The partial currents in the reactor (global) calcu-
lation were approximated by quadratic and cubic pol&nomials
and the basis functions used to generate the response
matrices in the assembly'(local) calculations for the
coarse meshes are chosen to be quadratic polynomials.

Various degrees of approximations are obtained by varying

the number of subdomains in a coarse mesh. -Two coarse

mesh dimensions werg considered, 20cm x 20cm and 1l0cm xlOcq,
and summaries of the calculations are succintly presented
in Téble 5.1 and Table 5.2, respectively.

The neutron flux distribution, illustrated in
Figure 5.1, displays a noticeable discontinuity at x=80cm,
although in the rest of the core the neutron flux calcu-

lated by the present methed agrees very well with the
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Table 5.1 - 3are homogeneous core calculation(fixed source
problem) with 20cmx20cm coarse meshes,

<P =neutron flux at X=80ca in the right coarse mesh.
4§’=neutron flux at £=80cm in the left coarse mesh,

‘;E § Cg’d sec) _
EEAINFT O - DO ow R o Rt Rpe e
Attt E N A iR a
o [-05 [1x1} 4]|.034| .110 946 [.935 [1.012/.901 .864 |1.043
& |.05 [2x2| 3[.025| .152|.940 [.920 |1.022|.883 |:823 |1.073
5 .05 |3x3| 31.025| .296(.936 [.916 [1.022(.875 |.815 |1.074
S |.os |exs| 3|.005] .658 .934 |.914 [|1.022(.872 [.812 |1.075
.05 hixtf 41.057| .171(.946 [.935 [1.012].901 [.864 {1.043
o 105 [2x2| 4].054| .257|.921 [.925 | .996|.852 [.852 [1.000
= 105 |3x3] 3|.042| .456|.932 |.936 | .996|.867 |.864 |1.003
® 105 |axe| 3|.042] .903].951 |.935 | .956|.866 |.863 |1.003
o |*O1 |1x1| 6[.048 | .122[.932 [.920 |1.0131.879 |.842 “h.043
2
& [.01 |2x2] 6[.048] .176).914 |.892 |1.025/|.844 |.783 |1.077
% .01 |3x3| 6|.047| .321|.910 |.888 [1.025[.838 [.777 |1.079
S |01 lexs| 6].048 | .667].909 l.es7 |i.o2s|.835 |.775 |1.077
J01 1x1l 6{.079| .189(.932 |.920 [|1.013.879 [.843 [1.043
o [.01 |2x2| 6|.080| .284|.908 |.912 | .996|.834 |.833 |1.001
S |01 |3x3] 6|.081| .497|.906 |.909 | .997|.830 |.825 }1.006
.01 |4x4| 6{.080 | .938{.905 |.908 | .997(.829 |.824 [1.006
o |01 [1x1]10].079 | .156|.924 |.913 [1.012).869 |.832 |1.044
5 .001 |2x2| 10|.078 | .205|.907 |.885 [1.025(.836 [.775 [1.079
=4
8 .00t |3x3]10(.077 | .348{.904 |.882 |1.025(.830 |.769 [1.079
% oot |sx4{10].079 | .711|.303 |.e81 |1.025]|.828 |.768 [1.078
.001 [1x1{ 10|, 131 | ,244.924 |.913 |1.012(.869 |.832 [1.044
© {001 [2x2| 10,129 | .331],902 [.905 | .997|.826 [.824 (1.002
faa]
3 .001 [3x31 10({.129 | .5417].900 {.902 ,998 [.822 (.818 [1.005
.001 |ax4| 10,132 |1.008|.399 |.902 | .997].822 |.817 [1.006
Analytical Solution »2004 |.9004 .8217 1.8217
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Table 5.2 - Bare homogeneous core calculation(fixed source
problem) with 10cmx10cm coarse meshes.

¢~ =neutron flux at X=80cm in the right coarse mesh.
¢*=neutron flux at X=80cm in the left coarse mesd.

W2 e CEU sec)
e o-| © ) ¥ =20 Y=2X
HEREE P N R R e
S |HEE e s oo | o o
o |05 |1x1] 5[.149) .259/.936 |.935 |1.001|.878 |.876 [1.002
) | A
& .05 |2x2| 4].120| .284].942 |.540 |1.002|.883 |.882 |1.001
5 l.os |3x3| 4[.121| .434|.940 |.939 [1.001|.880 [.879 [1.001
S |.o5 |4x4| 4|.120] .775) .958 |.939 |1.000|.878 |.878 |1.000
.05 |1x1} 5).249| .472| .936 |.935 |1.001|.878 |.876 |1.002
o [+05 |2x2| 4|.204 | .461).941 |.941 |1.000|.882 |.884 | .998
S |05 |3x3] 4|.205| .667].939 |.940 | .999|.879 |.881 | .998
© l.os |axe| 4|.204 [1.127] .938 |.940 | .998{.879 [.ea1 | .998
o |01 |1=1| 8l.233] 341].916 |.914 |1.002].847 |.843 |s.005
€ 101 {2x2| 7[.204 | .367).915 [.913 |1.002|.841 |.838 |1.004
S [0t |3x3 7[.208 | .512/.913 |.911 |1.002[.839 |.836 |1.004
S l.oi |ax4| 7|.208 | .860|.912 |.911 |1.001]|.838 |.835 |1.004
.01 [1x1| 8|.388| .552|.916 |.914 |1.002|.847 |.843 li.005
o 101 [2x2| 7|.3¢1| .599|.914 [.914 [1.000|.840 [.841 | .999
3 |01 [3x3| 7|.343 | .813{.912 [.913 | .999(.838 [.839 | .999
.01 |4xa] 7[.343 |1.264].912 |.912 [1.000{.837 |.838 | .999
.001| 1x1{ 14| .401 | .509|.906 |.904 |1.002|.834 {.830 [1.005
g .001)2x2| 13|.373 | .537).902 |.899 [1.003|.825 |.820 |1.006
ce .
& [.001[3x3{13(.373 | .686{.501 |.898 [1.002|.824 [.819 [1.006
5 |.001|4x4| 13373 |1.0357].501 |.898 [1.002|.823 |.819 |1.005
001 1x1} 14} .669 | .835|.906 }.904 [1.002}.834 |.830 [1.005
o |.001|2x2|13].622| .881].901 [.901 |1.000|.824 [.823 [1.001
3 1.001(3x3{ 13| .622 [1.095.300 [.900 [1.000(.823 [.822 [1.001
.001|4x4] 13| .622 [1.545| .900 |.900 |1.000|.822 |.822 |1.000
Analytical Solution l .9004 |.5004 .8217 .5217
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A
1.0k
— — —Analytical Solution
Y
005"'
200cm —>X
CCRE
200cm:
i
0.0 ; + \ 3 '
0.0 20. 40- 60; 80. 100.

X(cm)

Fig. 5.1 = Neutron flux distribution in a bare

homogeneous core calculated with quad-
ratic partial currents.(20cmx20cm coarse
mesh, 5J=.01,3x3 subdomains).
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analytic solutions. One of the factors contributing to
method itself, which is based on the continuity of the
partial currents aéross the coarse meshes but not on the
continuity of the neutron fluxes.

When cubic polynomials are used for the partial
currents the discontinuity is less pronounced than that
with quadratic polynomials, and for both approximations the
discontinuity decreases by increasing the number of sub-
domains in £he coarse mesh. From the results obsérvéd in
Table 5.1 and Table 5.2 the division of the coarse mesh in
9 subdomains(3x3) can be considered sufficiently fine
Asince it yields results almost coincident fo the results
obtained Qith division in 16 subdomains(4x4). .

The convergence criterion for the partial currents,
63'2-01 , yields results comparable to the results
obtained with &Eg=.001 , such that after approximately
6 inner iterations the results ate almost converged to the
results obtained with 10 inner iterations, in the calcu-
lations with 20cm x 20cm coarse meshes.

From the above results, the inner iterations para-
meters to be used in the eigenvalue problems_(with outer
and inner iterations) -can be estimated as:

a) the initial (first outer iteration) limit for the

number of inner iterétions should be approxi-

mately 5,
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'b) the initial (first outer iteraﬁions) limit for the
convergence critefion Eor partial currents should
be approximately Er - .01, |

c) at least two inner iterations (in opposite
sweeping directions) should be performed for each
outer iteration ,

d) the number of subdomains for each coarse mesh

should be about 9 (3x3).

5.2 Eigenvalue Pfoblem

The evaluation of the finite element response matrix
method for more realistic configurations was performed by
applying the method to two benchﬁark'problems: the 2D-IAEA

(47) (56)

benchmark problem and a Biblis behchmark problem.

5.2.1 2D-IAEA Benchmark Calculation

The 2D-IAEA benchmark problem(47)

is an idealized
pressurized water reactor (PWR) problem hith zone loading
and a pure water reflector as illustrated in Figure 5.2
(diffusion parameters and cross sections are shown in
AAppendix iv). This'problem was defined by participants of

the 1971 IAEA panel on burn-up physics(57)

and the objec-
tive was to provide a convenient common basis for verifying
new methods and for comparing the relative merits of

various calculational methods of solution.
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Upper octant: fuel assembly identification
Lower octant: zone assignzenis

‘External boundaries: zero incident current
Symmetry boundaries : zero net current

Fig. 5.2 - 2D-IAEA benchmark problem.(47)
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Reference solutions obtaingd with a fine mesh

(58)

VENTURE "~ calculation, which is a mesh-centered finite

(1)

~difference code, and a fine mesh PDQ-7 calculation,

which is a mesh-cornered finite difference code, agree to
within only 2% in assembly-averaged power distribution(ls),
as illustrated in Figure 5.3. For the evaluation of the =«
present method, however, the VENTURE solution is chosen

. as reference solution. One reason is that several VENTURE
calculations were made and the reference solution was ob-
" tained by the Richardsén extrapolation method and secondly
.becauSe the mesh-centered schemevis_considered by some
investigators to be slightly more accurate than the

(18) -

mesh-cornered schemes. -The computational time for the

VENTURE calculations is presenﬁed in Table 5.3.

Table 5.3 Computational time re uired for
VENTURE calculation({l (with
IBM 360/21) for different mesh
sizes. (4P/P is the relative devia-
tion of assembly averaged power
distribution.) :
Mesh width (cm) ’ keff maximum CPU (sec)
. : taP/Pt (%)
5 1.02924 13.9 19
. 00020
1 2.5 . 1.02944 5.2 204
g L L0004 Y
-~ 1.25 1.02954 2.0 930
l.sei)d 00004
v 2/3 1.02958 0.32 4800
extrapolated 1.02960. ref, solution -
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2D IAEA Benchmark Problem

Fig.5.3 -ZD-IAEA assembly averaged power distribution
calculated with corner mesh fine mesh(1 cm)

finite difference scheme(PDQ-7).

- Reference:center mesh finite difference
scheme (VENTURE) with Richardson
extrapolation.
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The results of the finite_elgment response matrix
method is presented below and for the rest of the presenta-
tion an abbreviated expression is used to describe the cal-
culational approximation adopted for each computation.

The notation "9/4 quadratic calculation" refers to quadratic
approximations for ‘the giobal flux and partial currents,
performed with. 4 coarse meshes per fuel assembly (2x2),
using response matrices generated (in the local calcula-
tion) with 9 subdomains (3x3) for each coarse mesh.‘

Table 5.4 presénts the computationél time required to
generate the response matrix for one unique assembly and it
can be noted that the processing time required for guadratic

and cubic calculations is of the same order.

Table 5.4 Computational: time required for response
matrix generation.

current and flux number of
approximation subdomains CPU (sec)
(global calculation)
g T %’; .032
quadratic . 9 Eﬁi .118
et
16 “XS{ : .356
4 .046
cubic 9 _ .147
16 411
N i Loelerm v L
U - : ’ )
. e o+ it £y .
“ﬁ - o f P cocrie v ¢ b~
T A
o OO U Wunin Prhorls ety

C/ L WLO{{,..,W O fd. oy,

-
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The convergence of the éalqulational scheme is
measured by comparing the nodal values of the neuéron
fluxes in two successive outer iterations, and from the
results shown in Table 5.5 one can expect that the conver-
gence limit, £¢ , of about 107> yields sufficiently
converged results. As noted above, the convergence cri-
terion for the partial currents in the giobal calculation
was fixed at EJ'= .Ql;

~

Table 5.5 Effect of convergence criterion Eip.

Calculation no. of outer CPU (sec) keff maximum
iterations E?¢ 14P/Pl (%)
34 1073 10.5 1.02971 -3.54
16/1 cubic 59 1074 14.3 1.0298 1.39
83 1072 18.0 1.0298 1.16
23 1073 3.5 1.0292 2.26
4/1 quadratic 51 1074 5.9 {1.0293] 4.04
64 1072 7.1 {1.0293]  4.25

The summary of the 2D—IAEA benchmark calculations
with the finite element response matrix method is pre-
sented in Table 5.6. One can conclude that with én
increase inthe number of subdomains for response matrix

generation the solution converges faster and the results
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Table 5.6 - Summary of 2D-IAZA benchmark calculétions.
: (Benchmark keff=1.02960)

Calculation No. of .
e ine] E [(see)] Kottty

4/1 quadratic 64 1.x1075| 7.1 |1.0293| 4.25
51 1.x1074| 5.9 [1.0293(4.04

9/1 quadratic 66 1.x1072] 8.2 |1.0296} 1.76
50 1.x1074} 6.6 |1.0296} 1.52

16/1 quadratic 66 1.x1072}10.2 {1.0296 ;83
42 1.x10~4] 7.9 {1.0296 .54

9/4 quadr;tic 150 3.x10-5147.4 |1.0295| 1.41
106 1.x10-4|34.8 [1.0294 1.18

16/4 quadratic | 150 2.x10-5049.8 |1.0294] .77
90 1.x1074]32.4 [1.0293| .26

4/1 cubic 91 1.x10-5/16.3 |1.0298| 2.04
72 1.x1074/ 13,1 11.0298} 1.83

9/1 cubic 99 1.x1072{ 18.3 [1.0299| 1.35
Y 1.x10"4112.8 |1.0299] 1.47

16/1 cubic 83 1.x1072118.0 [1.0298{1.16
59 1.x10741 14.3 |1.0298| 1.39

9/4 cubic 149 1.x10-5/82.9 |1.0295f .64
93 1.x10"4154.3 {1.0295| .65

16/4 cubic 150 1.3x107°86.4 |1.0294| .26
85 1.x1074 535 9 11.0294! .63
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are improved. Beﬁtei fesults are also obtained by
increasing the number of coarse meshes per fuel assembly
but with the penalty of increased computational time due to
the slower convergence. The decrease in convergence rate
with small mesh size is due to the fact that the spectral
norm of the. wresponse matrix method increases with
decreasing size of the coarse mesh (Appendix III). Examples
of the assembly averaged power distribution are presented
in Figure 5.4 and Figure 5.5, for 9/1 quadratic calculation
and 9/1 cubic calculation, respectively.

The thermal neutron flux distribution in the core
is illustrated in Figure 5.6 through Figure 5.9 for quadra-
tic and cubic calculations, and compared with theAdetailed

(47)'(seCOnd order Lagrange

solution obtained with FEMB
polynomials in rectangular elements). The results of the
quadratic calculation (Figure 5.6) indicate noticeable
disagreement in the core-reflector region, due to the

poor interpolation properties of the guadratic polynomials
in large (20cmx20cm) coarse meshes. The cubic calcula-
tion (Figure 5.7) with identical coarse meshes indicates
better agreement in the neutron flux distribution in the
neighborhood of the reflector. The results of smaller
coarse meshes (l0cmxlOcm) are in much better agreement
with the detailed FEMB solutions,‘and for these smaller

coarse meshes, the cubic calculation (Figure 5.9) results

in better agreement than the quadratic calculation
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2D IAEA Benchmark Problem

4.286 |T.506 |8,307/6.917-|32 476
4.212[7.4018.215 6.842 {3.445
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Pig.5.4 -2D-IAEA assembly averaged power distribution
obtained with 9/1 quadratic calculation.

(E¢=10"2)
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2D TAZA Benchmark Problem -
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Fig. 5.5 =-2D-IAEA assembly averaged power distribution
obtained with 9/1 cubie calculation(€¢=10'5kk
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A?lux(arbitrary units)
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5.6 - 2D-IAEA thermal neutron flux disiribution obtained
with 16/1 quadratic caleulation( Es =10'5).
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Fig. 5.7 - 2D-1AEA thermal neutron Zlux distribution obtained
with 16/1 cubic calculasion( Egb =10'5).
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Pig. 5.8 - 2D-IAEA thermzl neutrcn flux dietribution obtained
with 1€/4 quadratic calculation( g¢»=2.x10‘5).
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Pig. 5.5 - 2D-IAEA thermal neutron flux distritution obtained
with 16/4 cubic calculation( E¢ =1.3_x10"5).
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(Figure 5.8).

Except for the 4/1 quadratic calculation, the results
shown in Table 5.6 are well within the accuracy expected
from é.coarse mesh method. To illustrate, Table 5.7
contains results obtained with several well-known efficient -
coarse mesh methods,'some of which are routinely used for
production level calculations.

The results of 9/1 and 16/1 calculations for both
gquadratic and cubic approximations shown in Table 5.6 are
relatively accurate .and at the same time economical in
view of the results shown in Table 5.7, taking into account
the size of the coarse meshes (20cmx20cm). Moreover, the
fact that the spatial neutron flux distribution is avail-
able throughout the core for the finite element regponse
matrix method, compensates for some extent the- slight
disadvantage in computation time. However, the extensive
and expensive optimization of various internal parameters
and detailed investigation of the acceleration (outer |
iterations) methods more suitable for the present calcu-
lational method should be considered before production

level status is achieved.

. 5.2.2 Biblis Benchmark. Calculation
(56)

The Biblis benchmark problem is an idealized
PWR with checkerboard loading and reflected by water as

illustrated in Figure 5.10 (diffusion parameters and cross



Table 5.7 2D-IAEA benchmark problem solved by

. coarse mesh methods.

17,18,20,47)

coarse mesh keff maximum coarse mesh CPU(b) no. of
method laP| /P (%) size order | (sec) outer
iterations

NEM (MEDIUM-2 ' _ ) (c)
program(17)) | 1.0296 .05 3 1/3 cm 4 15.1 42
| 1.0298 1.67 10 cm 4 4.17 26
1.0300 3.67 20 cm 4 1.77 35
nGru 20) 1.0296 .71 20 om 2 1.8(¢) -

FEM(FEM2D /o, ,

program ) 1.0297 1.87 606 nodes 2 35.8 - 76
1.0302 14.87 182 nodes (@] 2 6.8 40

(a) average of 2 triangular coarse meshes per assembly.
(b) CDC 6600 computer.
(c) CYBER 175 computer.

L6
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.0 o _ —> X(cm) . - 196. 54
1 8 | 2 6 1 7 | 1 4 3
(LT 1L 3) 0,6 T G, 6 T, 1 L8 [(1,3)]
T | 8| 2] s 1 1| 4 | 3
o 1(2,2)((2,3) [(2,4) | (2,5)(2,6) [(2,7) |(2,8) |(2,9)
| K 8 | 7 T ¢ ] 3
!ly(cm) (3.3) |(3,4) | (3,9|(3,6) (3,7) [(3,8) |(3,9)
| T2 8 1 | 8| & 3
[(4.4) [(4,5) |(4,6)1(4,7) |(4,8) |(4,9) |
| T 2 5 4 | 3 3
symnetryline: — — —  |(5:5) [(5.6)((5,7) |(5,8) [(5,9)
L s | a3
fuel assembly dimensions: (6,6)1(6,7) |(6,8)
23.1226cnx23.1226cm - R
' (7,7) [(7,8) |

N
— |-2zone assignment N\
L {«fuel assembly identification

Pig. 5.10- Biblis benchmark problemgss)'
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sections are given in Appendix iV}. This problem is

highly nonseparable (x-y separability) and thus represents

(56) {5 the coarse mesh methods. Although

a severe challenge
there is no accurate fine mesh finite difference results
availablé, two‘of the.coarse mesh methods, NEM and NGFM,
have produced resultsgse) which agree to within 0.15% in
assembly averaged power distribution as shown in Table 5.8.
_ Therefore,the reference solution adopted for the evaluation
of present investigation is the NEM solution obtained with

-~

5.781cm x 5.78lcm coarse meshes.

Table 5.8 Biblis benchmark problem solved by
coarse mesh methods. (19,20,56)

coarse mesh k maximum - coarse mesh
method eff 14P1 /P (%) size order
NEM ] 1.02511| ref. solution| 5.781 cm 3
1.0251 1.6 23.l226 cm 3
NGFM 1.0251 15 3.854 cm 2
1.0252 | 1.7 23.1226 cm 2

From the summary of Biblis benchmark calculations
presented in Table 5.9, one concludes that the 11l.56lcm x
11.561cm coarse mesh calculations, i.e., the 16/4 quadratic
and 16/4 cubic calculétions, yield essentially the same

results as the 5.78lcm x 5.78lcm NEM coarse mesh calcula-
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Table 5.9 Summary of Bibllis benchmark calculations.

calculation no. of CPU . Kagg | maximum
'outerm é;¢, (sec) e | AP /P (%)

h terations
9/1 quadratic 73 1x107% | 9.9 | 1.0255 2.79
99 1x107> |12.5 | 1.0255 2.51
16/1 quadratic| 66 1x107% |13.6 | 1.0253 1.72
99 |3x107> [16.7 | 1.0253 1.17
h6/a quaratic | 101 |1x107% |a1.5 | 1.0250 .90
| 150 3x107° [55.6 | 1.0250 .20
9/1 cubic . 52 1x1074 J13.9 | 1.0255]  3.67
99 1x107° [21.8 | 1.0255 2.96
16/1 cubic 54 1x107% {19.9 | 1.0254 2.11
99 2x107> | 26.9 | 1.0254 1.55
16/4 cubic 102 1x10™% | 70.5 1.0250 .87
150 2x10™> | 96.8 1.0250 .23

tion.. Figures 5.11 and 5.12 illustrate this in more
detail by comparing the assembly averaged power distribu-
tion for the reference solution (NEM), the nodal Green's
function method (NGFM) solution, and 16/4 quadratic and
16/4 cubic calculations, respectively. Computation times
for the finite element.response matrix solution are given
in Table 5.9; however, computation times for the NEM and

NGFM solution are not available.
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Biblis Benchmark Problem

5.644]5.707 |6.431 |6.314 |5.640 |5.087 |5.676 |5.264
5.65615.71016.441 16.326 5. 642 15.087 5.668 15.249 1~ - +

5.652|5.708(6.438 |6.323 |5.640 |5.089 {5.672 [5.256
, 15.783|5.865 [6.335 [5.527 [5.349 [5.558 [5.037
5.79315.879 [6.342 |5.533 |5.346 [5.549 |5.022
I 15.7905.877 |6.339 [5.533 |5.346 [5.553 |5.028
‘ ' 5.81115,718 [5.803 |4.785 4.828 [4.279
5.817 |5.727 |5.804 |4.785 4.821 [4.267
5.814 [5.726 |5.803 {4,786 |4.823 14.272
6.013 15,379 14.926 [3.966 [2.831.
- 16.017 {5.383 |4.923 [3.964 [2.824

.819 [5.147 l4.535

5.818 [5.147 [4.533

5.816 [5.146 [4.532

6.218 [5.550

6.219 [3.549

6.216 [3.546

N
AN
N

«— Calculated
<« NGFM(3.854cm meshg
< NEM (5.781cm mesh

Fig. 5.11 ~-Biblis assembly averaged power distribution
obtained with 16/4 quadratic calculation.
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BibliS'Benchmark Problem

. } .
5.642|5.695(6.428 16,312 15.63615.084 [5.674 [5.266
5.656]5.71016.44116.32615.642 15,087 [5.668 |5.249 |
5.652(5.708|6.438 |6.323 |5.640 |5.089 [5.672 [5.256 |

. 15.779]5.865 |6.332 [5.527 [5.346 [5.554 [5.038
5.793|5.879 |6.342 |5.533 |5.346 |5.549 [5.022
! 5.790/5.877 16.339 15.533 |5.346 {5.553 |5.028
‘ [5.80715.718 15.802 |4.784 |4.827 |4.279
5.817 15.727 |5.804 |4.785 {4.821 l4.267
5.814 |5.726 |5.803 |4.786 [4.823 |4.,272
6.012 |5.379 [4.926 |3.969 |2.832
6.017 |5.383 |4.923 3,964 |2.824
6.014 |5.382 |4.922 [3.965 |2.827
5.818 (5.148 {4.537 |

5.818 |5,147 |4.533

6.225 {3.554

6.219 (3.549

6.216 [5.546

\\
AN
AN

«— Ca

Fig.5.12 -Biblis assembly averaged power distribution

lculated

«— NGFM(3.854cn meshg
<«— NEM (5.781cm mesh

. obtained with 16/4 cubic calculation.

(E¢=2.

x10“5)
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Biblis 3enchmark Problem

-.92 | -.93 |-.82 |-.70 |-.43 |-.10 [+.32 +1.05
5.60075.65576.38576.279(5.61675.08415.69075.3117

5,652 5,708]6,43816,32315.64015,089 15,672 15.256
| =86 | ~.82 |=.65 |-.45 [=.04 |[+.32 [+1.05

, 5.740/5.82916.298(5.5085.344 {5.571{5.081
: 2.79Q15.87716.33915.53315.346 |5.555 |5.028
! -'67 -'058> -034 -.04 +037 +1.1O
5.77515.693 |5.783 14.784 {4.841 4,319

5.81415.726|5.80% |4.786 |4.823 |4.272
-040 -.19 +o10 +048 +1o17

5.990 |5.372 |4.927 |3.984 |2.860
6,014 |5.382 4,922 |3.965 |2.827

00 {+.23 [+.71

5.816 |5.158 |4.564
5.816.5.146 14,532
+.51 +1.JO

6.248 |3.585
6.216 [3.546

N -
N

N

N\

— l(calc.-Ref.)/Ref.(%)
—— |~ Calculated
—— |« Reference (NEM)

Fig. 5.13 -Biblis assembly averaged power distribution
obtained with 16/1 quadratic calculation.
(E¢ =3.x10"5) ' '
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 Biblis Benchmark Problem

'v
-1.1C]-1.09{-.95 |-.82 |-.55 [-.24 [+.25 [+1.03
5.59075. 64676.377 [6.27115.60975.077 [5.686 {5.3107
5.652|5.708|6.43816.323|5.640(5.08915.672 |5.256
I‘ \"1004 "095 "0,76 "052 "019 +-25 +1005
5.730(5.821(6.291(5.504 |5.33%6 {5.567 {5.081
! 5.790/5.8771{6.33915.533|5.346 {5.553 |5.028
! . F=.81 [-.65 |-.38 [-,10 {+.37 1+1.17
5.767/5.689 (5.781{4.781{4.841{4.322
5.81415.726 |5.803 |4.786 |4.823 |4.272
"043 -.20 +014 +o66 +1.38
£.014.5,382 14,922 13,965 12,827
. 07 [+.47 |+1.06
5.820(5.170 |4.580
5.816 {5.146 {4.532
+.92 l+1.55
6.273 |3.601
6.216.13.546
N
AN
N\
AN
| [~ .(CaIC.—Ref.)/REf.(%)
—— |~ Calculated
— «~ Reference (NEM)

Fig. 5.14 -Biblis assembly averaged power distribution

obtained with 16/1 cubic calculation.
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Pig. 5.15 - 3iblis thermal neutron distribution obtained 23.1226¢cm)
with 16/4 cubic calculation( € =2,x10-9). .
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It is also noted that 16/1 quadratic and 16/1 cubic
calculations yielded-reéults-acc;ptable (within 2% for
assembly averaged power levels) for coarse mesh methods
ﬁut with a significant improvement in computational time,
. compared with the 16/4 quadratic and cubic calculations.
Figures 5.13 and 5.14 present the results utilizing the
16/1 quadratic and 16/1 cubic approximations, respec-
tively.

The small relative increase in computational time
. when compared with 2D-IAEA benchmark.caléulation is
‘primarily due to two causes: the increase in the number of
differént loading zones thus requiring generation of a
greater number oﬁ response matrices and the slower
‘convergence of the outer iterations caused by the
highly nonseparable neutron' flux distribution, which is

illustrated in Figure 5.15,



CHAPTER 6

CONCLUDING REMARKS

6.1 Summary of'InVeétigation

The present investigation examined an alternative
formulation of the response matrix method implemented
with the finite element method for application to coarse
mesh reactor analysis. »

The finite element method was applied in a two level
scheme., The first level, the local (or assembly-level)
calculation, utilized quadratic Serendipity elements to
solve the weak form of the inhoﬁogeneous diffusion equa-
tion subject to incoming partial current boundary condi-
tions. The résults of the local calculations are then used
to generate the response matrices. The unique feature
of the response matrix formulation is the use of two types
of response matrices - one giving the response in the
outgoing partial current on the boundary due to incoming
neutrons which diffuse to the boundary (without absorption
or outscatter) and the second type giving the response in
the outgoing partial current due to a source within the
node (inscatter or fission or external source). Conven-
tional résponse matrix methods only utilize the former

type of response matrix, which is then generalized to

107
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include the response in the outgoing current due to the
incoming neutrons which eventually reach the boundary. The
second level of the finite»element application is then to
utilize the response matrices from the local calculation

to solve for the global fluxes and currents. The global
fluxes and currents are themselves expanded in either
quadratic or cubic Serendipity elements (a2 user option),
-which are independent of the finite element basis functions
used for the expansion of the local fluxes and currents..

- The unknown expansion coefficients for the global fluxes
.and currents are then solved for utilizing a Gauss-Seidel
iterative method to sweep through the global mesh, until
the partial currents and fluxes converge.

This alternative formulatibn of the response matrix
method (two types of response matrices) has the advantage
that it decouéles the response matrix generation from the
internal neutron multiplication factor, keff’ since the
response matrices are not a function of keff as in the
conventional response matrix formulation. Thus the expen-
sive regeneration of response matrices during the global
solution is avoided, which is a significant advantage.
Secondly, the multigroup diffusion equation can be readily
solved by standard source iteration methods(outer itera-
tions). Finally, acceleration of the outer iterations
convergence rate was obtained by using the Chebyshev poly-

nomial method.



109

6.2 Conclusions’

Based on the»preceding discussion of the invéstiga-
tion into the finite element response matrix method for
coarse mesh reactor analysis, the following conclusions
are made:

1. The method was applied to the idealized zone
loading PWR problem, the 2D-IAEA test problem, with excel-
lent resulfs. The error‘in the assembly averaged power
distribution is within the error observed with fine mesh
(about 1 cm) finite difference calculations (VENTURE ana
PDQ-7) when compared with the reference extrapolated
results; The savings in the computational time, therefore,
are substantial given the comparable accuracy and the
significant increase in the amount of information available,
e.g., the detailed spatiai neutron flux distribution. The
disagreements in the neutron multiplicatién factor, keff'
are slight and well within the accuracy expected from
coarse mesh mefhods.

2. An accurate comparison in the computational effi-
qiency of the present method with some of the highly effi-
cient production level coarse mesh codes, e.g., NEM and
NGFM, is not possbile due to the difficulty in comparing
relative efficiencies of different computers used with the
various methods. However it would appéar, using the

(59,60)

information available concerning relative speeds

for the various computers, that NEM and NGFM programs are
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somewhat more efficiént than the finite element‘résponse
matrix method at the present stage. prever, the fact that
additional information is available with the finite element
response matrix method, in particular the detailed neutron
flux/power distribution, represents significantvadvantage
for the present method. In addition, the unquéstionable
potential to incorporate'additional capabilities such as
treatment of spatially dependent cross sections, triangular
geometry, and highly heterogeneous fuel assemblies, also
compensate to some extent the relati&e increase in the
computational time when compared with NEM and NGFM.

3. The successful application of the finite element
response matrix methéd-to the highlf nonseparable problem,
'the-Biblis PWR with checkerboard loading, has shown the
capabilities of the present calculational method to solve
practical problems with realistic loading configurations.
In particular, the assembly averaged power distribution
calculated with a relatively coarse mesh yielded
essentially the same results as somewhat finer meshes
for the NEM and NGFM'methods.

4. Concerning the accuracy and efficiency of the
finite element response matrix method as a function of
polynomial order and mesh spacing, comparable results are
obtained for the test problems with 9/1 quadratic or 9/1
cubic calculations, with the cubic elements yielding more

accurate results than quadratic elements at the cost of a
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slight increase in computational:time. 'The subdivision of
the coarse mesh (assembly) into 9 subdomains to generate
.the response matrix is sufficienﬁly accurate compared with
the results with 16 subdivisions, and for smaller coarse
mesh size (e.g., 9/4 calculation) the results are better
but the con&ergence rate for the outer iterations decreases
substantially due to the larger spectral norm of>£he itera-
tion matrix for smaller mesh sizes, with consequent increase
iﬁ computational time (about factor of 4).
v5. The alternativé formulation of ﬁhe response matgix
method, utilizing two types of respmse matrices, avoids
the expense of recaiculating the response matrices (or
parameterizing them) as a function of keff’ This is
especially significant in fuel management analyses where
all of the fuel assemblies (or éven portions of them) will
have different burnups, hence diffétéét‘feSponsg*matrices.
6. The present method is readilf.generalized to
treat heterogeneous assemblies (e.g., waterholes or poison
pins) or depletion induced spatial variations in the nodal
cross sections. This is due to the fact that the use of
the finite element method for the generation of the
response matrices is nbt restricted to a homogeneous
domain, although the current code does have this restric-
tion. Thus the method is capabhle of generating detailed
within-node neutron flux/power distributions in a hetero-

geneous assembly with little increase in computational

time.



112

6.3 Recommendations for Further Study

Since the capabilities of the finite element response
matrix method have been demonstrated in . realistic reactor
calculations, future effort should be expended to extend
the calculational model and optimize the computational
efficiency of the code. 1In particular, further study
should be directed at the following: |

1. The cohvergence of the outer iterations should be
improved developing a more effective acceleration scheme._
than the Chébyéhev polynomial method used presently. For
example, an examination of the theoretical foundations
for the coarse mesh rebalance acceleration method(54) with
respect to the finite element response matrix method
could be undertaken in order to develop an equivalent
acceleration scheme to improve the convergeﬁce of the outer
iterations.

2. Extend the present method to take into account
the effect‘ofdépleﬁon induced spatial cross sections
variations, as suggested by Kavenoky and Lautard(23) for
the finite element method.

3. Provide a.feedback calculational capability by
treating separately small regions of the core (coarse mesh)
and regenerating the response matrix only for these
regions. Also a scheme which would allow inexpensive_
regeneration of the response matrix should be investigated

to allow inclusion of a small spatially deperdent

perturbation into the inhomogeneous term( source term).
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4. Generalize the respons?_matrix generatiop to
héterogeneous assembliés which would allow the treatment
of local heterogeneities and would result in the calcula-
tion of local pin power peaking within the coarse mesh
ﬁode. | |
; 5. The use of a triangular mesh (with the associated
finite element) should be developed in order to extend the
. calculational capability to hexagonal fuel assemblies of
fast reactors. }

6. Improve the computational efficiency by opti-
'mizing the coméutational algorithm and the programming.
For instance, higher order finite element approximations,
e.g., cubic or quartic, should be investigated for the
local calculation (generation of the response matrices)
in order to improve the accuracy of the global calcula-
tions without ‘excessive increase in the computational

time.
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APPENDIX I

ACCELERATION SCHEMES

The outer iterations convergence of the finite
element response matrix method was accelerated by two
acceleration schemes: asymptotic source acceleration :
method and Chebyshev polynomial method.

In order tp apply the asymptotic source acceleration
method and the Chebyshev polynomial method to the response
matrix method, the solutions given in. the équations (2.20)
and (2.21) is rewritten for a fixed source problem as

5 ’-' S\-
o e —w e YT RS
(for group g) J AT - u ) .

G-yt~ M > {2 o) |

s g
B ST (TS e

where

o I fg w7y | Lo ¥ g]
Ky =147 (T-EH,) "5 1) - ‘
Therefore the problem (4.8) can be given as

-k -5 @)
oK. - &
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where

/fg_ , 9242, is (LxN)x(LxN) diagonal with
elements J9222? , i=1,...,(LxN),
7@; is (LxN) x (LxN) diagbnal matrix
with elements 'ézi o, i=1,..., (LxN),
and <Ug<2;f (r) and ‘sz(r) were expanded in the same
basis functions as fg(.r), with J/géi and 'Z;z,: as
expansion coefficients, respectively.

Defining>
= = (T.2)

the equations (I.1l) yield

L
L 7.

(I.3)

Nﬁ

e

\\3%

Fpb Lk )

and introducing the equation (I.3) into the equation (I.2),

one gets
_ 7 )
o %%V =
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where

\ ==é§?ﬁ2ég -+, £

——
ap——

I
ISy
I

4

—
—

Now the outer iterations can be given by the power method

(source iteration method) as

y/t)’_ g K- y/u) (I.4)
_gw RS / ZL_ZQ oes-

Asymptotic Source Extrapoiation

The asymptotic source extrapolatién method(Sl)
assumes that some previous outer iterations are performed
such that X(t) has reached asymptotic convergencé
behavior where higher eigenmodes are sufficiently dampened
and the error is dominated by the first eigenmode.

Assume k> k_l 2k, PEEEE 1> kaN-l> O,where k. is

the.eigenvaluelof K,
K= 1

1,...,LxN-1,are the eigenvectors of K

and -

For flnlte.dlffgrence equations this assumption has
been proven to be ValidL54l but for the response matrix
method one has to assume its validity because the proof

is not available. The positivity(3) of Ky and K,

cannot be proven for the response matrix method, because

the elements of the response matriceisg are not

=

strictly positive.
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Expand

LiX

Y2 as ¢
- VEY,

and assume that convergence has reached an asymptotic be-~

: (¢ . :
havior such that 4iy = ;é , then for iteration t,

X({/:_)? HQ/;;: )tﬁ{1+0[%)7}

}/M: y("o) . yza.t

where U—=“éa/%£ is the dominance ratio, and
y@v is the fundamental mode to be determined.

The eigenvector >/ can be estimated by two successive

iterations as

}/1 | y(t)-_ v, (t-L)

B 0;&'”(0"——1)

such that the estimate of the fundamental mode is given by

(°°) >/(f/ (y(f/ y(fl))
_l

it

where U is the estimate of dominance ratio obtained by
a procedure based on the error decay rate as described in

Ref. 51.
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Chebyshev Polynomial Method

1) .
The convenient form of the response matrix method

in order to apply the Chebyshev polynomial method can be

obtalned by rewriting the equations (I.l) as

4 . N

7 2)[# K|

(S

NS

Q¢
~

fl

Ix
I

I

O N

£

N
AN
57

kT

—
sy

. or succintly

-

where

.Z___ B

T

1Q

W

=

(NS

N

Sy Wy

{
| Y

1S
N
Q
1S

I

assuming that the invérse exists.
Then the outer iterations can be given by the power

method as

(«/ >,

2
f - 4’%1) f z L, l42 .
4
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The eigenvalues of P are again assumed

k > k 27/ -k LcN—1 > 0 and the corresponding eigen-

vectors are X, i=0,...,LxN-1 / that is

Fr=t K

Assume a sufficiehtly converged eigenvalue is avail-
able, ké/;) ~ ko' after t iterations.
The Chebyshev polynomial method as shown by Hageman

(53)

and Pfeifer can be derived by choosing the accelerated

solutions as a linear combination of eigenvector iterates
12(¢) A
such that

.

12 (% +l°) 24 12(¢+3) | 12 ( ff/’) '
# a}pﬁ + lfﬁ +,,.+ Q/)/P (I.S)

—

- Expanding

.
o
<

iﬁ -

“normalized such that cl=l, the equation (I.5) becomes

11(1’7‘/’)2 Z ,g_
e 0’/’/ . (I.6)

I=1 /-=o

L=1
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and if one deflnes f?(/ :2 , equation (I.6)

becomes

* 7 | '
¢IZ/f:) -,LZ J)X @

—_— ,{'.-_-z

The accelerated solution is obtained by choosing
P (y) such that P 1)=1 and max tP (y)! is minimized,"™
ogy¢r ' P
which is the classical Chebyshev minimax property. The

polynomials Pp(y) are therefore Chebyshev polynomials

given by

B=Go (2 ~1)/G (2 -1)
where

caﬁ4 /;>cab/ /) ,Cy

Coly) =<
P .
(/’C"jd/) , L<y<L .

Using the recursion relationship for Chebyshev
polynomials, the acceleration scheme can be given by the

algorithm

@ ﬁ/z (Z+p-2/

- éﬂ+pd/ = — b

&4

7 /ffP)
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@ X0 g 7‘,0} ﬁj o (47 l} [ 5512 ( ﬁp) ﬁljﬁﬁ'!{/
al Ty -J} .12 (T+P ’d
‘4 [ F* ]
7d S

{V (7] % (t1p- 1/// ﬁﬁ‘i@ /f,c,)// Y é‘%z (ttp 2 Y,

p=l, 2. s

where’ °<2=-Z/(2—-a'.*) ,@:0’ | : A -
oty =y Jadhl G-7]
h[py]

:(1.- f/z)o(f,-l. ,

y=cel(2/F-1)

0. is the estimate of dominance ratio ob-

tained from the decay rate of the error

%

i A—
_ F
= "4’”7 "/?—//7' cfz
P f i [/ 7

where

f /f/-_ fzz /ﬁ“ ﬁjg t-2)

P ——— [P



123

APPENDIX II

VARIATIONAL FORMULATION OF DIFFUSION EQUATION |

The quadratic functional (the definition of each term

is given in Chapter 3} for the coarse mesh —2,,

Fiv)= [m)w///«)v%/fu + 2, i) Hz)

~Zs //z) [/1)]45( -,L/j([y/ /’7:) %/”272&//& , (IT.1)

%Z/EJ € A£; 5

has a minimum for %; z:gén , where §é7 "is the solution

of the diffusion equation (assembly level calculations)

“V*p”’/ﬂ)y‘é/ﬂ)*zm/ﬁ)Cf,é/&/’fm//f)z A€ L2y (11.2)
subject to the boundary condition

L1)- 2 ble)+ 1D, ln) i o) () el

and the interface conditions of continuity of current and

flux.
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PROOF: Define the bilinear functional

) [ v 2 )t | o

and use the definitions in Chapter 3 for the volume and

boundary inner products to express F(}% } as follows

k)=t ) -2 (o)

ERSLE I A DN YA

Now multiply equation (II.2) by %;(r) and integrate

over oy

_/(zm%(/'() [_ VD (2) V@ (x)ladn +;é§f, (2)2, (5) gj/g)aézs

m

(I1.4)
L b8 s e
The objective is to include the boundary condition
on cﬂyzn by an integration by parts; however, %2,(r)
( é:Aéf)is acontinuous function with discontinuous first
derivatives within 7, and one cannot directly integrate
equation (II.4) by parts. But if the domain is partitionec
in M subdomains _42%”n , m=l,...,M, such that yﬁ7(r)
has continuous first derivatives within each _(Z,,, , the
integral involving the derivative can be expressed as a

summation of integrals yielding
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iz

fQ‘ﬂ,,,, %/J/[" V)%/if} VCé/{z)]o//g +

(11.5)

éﬂ in) 2o, ()@ la) - | i) 5,0

Denoting the summation term as < , each integral in

the summation can be integrated by parts to yield

P ij gg/a)Vﬁ/gj )y - l V[%@% 7 (1) }

_ gmyg‘g@)vgwdﬂ .j ¢ W,T,)w)m/ we)ds

mz=/ '{?m,n "/Zf

——

where /ﬁm(_.rsl "is the vector normal to the boundary ‘757mm
But t;x_e; interface condition of continuity of current,

'@/Q}Vsé’@}, eliminates all of the interior surface inte-

grals, and. the boundary condition on the outer boundary

‘ J..Qm can be applied to yield

2 iéf/ff/ RV s ;f )21 £ B
H
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Inserting 427 into equatidn (II.5) yields -

So ol D)V 1)V fa)dln -2 8 7)),

153 f,@lﬁ/&)}i () +[ j:;/z);é/e)yj/e/a/g

= :émfm/d) Li)da

which in terms of,é—/%%/k&/)and the volume and boundary

inner products can be written as

HE,0) + £ <, > =

(II.6)

(50, %) + \Z</;'/.%)

Oor rearranging

(oo Vo )=HB, )~ £ <90, 0> 7
- Inserting equation (II.7) into equation (II.3),
Fl)= bt b)) -246, 4) <55 -4, % >
4, T - D

But since

1445'5é525"%2)=ﬂgéﬁ,%%)'éaéé%;kz/ f>&7éé/%2/)

(II.8)
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and

R G R S AC M IR Y

the equation (II.8) can be rewritten as

FIY)blt-d 4B )b 8)- <D, %D

(I1.9)
+Z£ (4/";/ %/,,,—> +Z/ <%/ }jv{> ‘
The value of the functional at é_, 'is
F/ﬁ,,/'—‘- —A'/%r)/ ¢m) - 2/" <¢o,/» Qn >
A (IX.10)

R/ T

Subtracting equation (II.10) from equation (II.9) one gets

)= Fb)=b-8 1 h )+ £ <2, 4 >
<G, >+ £<U, LD

or

A2 )=Fld, )-8, %-é/*‘f( 5,84

m

and for 7,5,«, %%‘7 / é,, é//zll |
F/%)>F/¢@,,) ,for all %é//zl.
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where ¢m is the solution of the diffusion equation (II.2)

subject to the irradiation of j_(rg).

Therefore, F(%) is minimized by % , as was to be

proven.

Galerkin Approximation
The Galerkin approximation for variational problem

(IT.1), can be derived assuming that F( (7,0,, ) has a minimum
, -
at 5% € //2 , which implies that F(¢,,,-/—1L%y) has a

minimum at t=0 for arbitrary %} p '4/; ; Or

é% /:/q; + 2, /Z;o s tox a1 ¥, €4
men. 715 L )b B2, b ) - ‘
(s By #2000 LU Bt Y-
et ) )+ 2t [P
() Ya) - £ (%”—%, %2/" RS D

But

éi%/ﬁ'/é? +76%)/ =¢ ) for allsﬁé//zj}

Lo
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resuylts in

H#,,4,)= (5, m/+ IAT-, 9>

Then using the definition of a ( ¢z7/ %; ) in Chapter 3,

one obtains

” %/ %/-:ém & +2—/.<7/m—/ % > ) fro?’ all % _é/é/zl/

-

which is the Galerkin approximation derived in Chapter 3.

Ritz-Galerkin Approximation

The Ritz-Galerkin approximation can be obtained by
admitting the solution defined by equation (3.8) in Chapter 3,
in order to minimize the functional F( %;).

Rewriting the functional (II.3) as

Flt)= b, 1) =2 (0, 16 )0 £<005, 45>
~ <9 > 7‘2’-<%/75ﬂ>‘

and inserting the approximatkn1(3,8) of Chapter 3,

Ne Ne

Fitf-22 4. 4! /zZ¢ o811 U 14>

~§§é/<’/%é >+152¢¢ phpl>
J Y

7 m
’1/ ‘7
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By imposing§%5 FY?&%) = 0 for all k=l,...,Ne,'the sta-
177& .
tionary point which coincides with the minimum of F( %%( )

is obtained,

| He - -
575[" /s % Y-0- Zg . 4 9””7{ %ﬁ/ -2, 1)

V(II.ll)

~F U 02 8 <A

=/

Then from the definiti¢nnof a ( %;/%;) from Chapter 3,

equation (II.1ll) can be rewritten as

a

Me '
fof £y, o
lgévl’Q/%'}%é )’"’ (foy, %z) +Z (/m/ %’nj > | (I11.12)

which is the Ritz-Galerkin approximation.
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APPENDIX III

INTERPRETATION OF THE BLOCK-JACOBI SPECTRAL NORM

The spectral norm of the block~Jacobi matrix shown in
Fig. 4.5 can be given by the largest absolute row sgm.(z)
From the definition of the matrices Ty (L,3), k=;,...,4,
given in Sec. 4.2 and observing the glock-row (1,3), the
block-Jacobi row sum is given by the row sum of the
response matrix 55-(i,j). Therefore the spectral norm

can be given by the largest absolute row sum of all response

matrices R? (i,3), i=l,...,i__ ; 3=1,...,3

max’ max"®

A physical interpretation of the spectral norm
can be obtained by assuming a simpler situation, where the
partial currents on each. face of the coarse mesh are
assumed spatially constant. In this case no negative ele-
ment is possible (Table 4.1 and 4.2) in the response matrix-
55-(i,j) because a pésitive inward partial current on any
face of the coarse mesh must ¥ield positive outward partial
currents from each face of the coarse mesh.

If an inward partial current of constant magnitude is

considered,

__Z_?‘/;/}: @(/j/ l/ 'l/l/ b4
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the outward partial current is given, in the absence of

internal sources, by

1st row sum of R™ (i,3)

Ef(irj) = 2nd row sum of R (i,3)

QG O

)

3rd row sum of A(i,3)

pi
===

(&

4th row sum of 5 (i,j‘)

Since the magnitude of the outward partial current
must be less than the magnitude of the inward partial
current, every element of £+(i,j) must be less than unity,
and it can be interpreted;as'the probability of an incident
neutron to emerge from a boundary of the“coarse mesh dithout
being absorbed or outscattered.

Because every element ofng(i,j) is positive, each
element of g+(i,j) coincides with the absolute row sum of
@F—Li,j). Therefore'the spectral norm of the block-~Jacobi
matrix may be-interpreted as the largest probability of an
incident neutron to emerge from some side of any coarse
mesh. Equivalently, the spectral norm is the largest
transmission or reflection probability in the system.

‘Therefore the block-Jacobi matrix will have a larger
spectral norm for coarse meshes with smaller dimensions

or decreased absorptiont+removal cross section, since the

transmission probability in each case will increase.
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APPENDIX IV

DIFFUSION GROUP CONSTANTS

The one-group diffusion constants for the simplified
200cm x 200cm bare reactor used for fixed source calcu-

lations are given in Table 1IV.1l.

Table IV.1l One-group diffusion constants for
bare homogeneous reactor.
(Source = 1.0/s/cm3).

D (cm) S, (/em/b) »Z,(/en/p) BZ (/cm?)

.90 .10 - .09 : 0.0

The two-group diffusion constants for 2D-IAEA bench-

(47) (56)

mark problem and Biblis benchmark problem are

given in Tables IV.'3 and IV.2, respectively.
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Table IV.2 - Two-group diffusion constants for

Biblis benchmark problem.(SG)

(82 = 0.0 , x*=1.0, X%=0.0 )
5 9 7 7 7
o 5| Zo Zf 2y Zz\
1 |1 ]1.4360 |.0095042 |{.0023768 |.0058708 |.017754
2 | .3635 |.0750058 {.0388940 |.0960670
2 |1 |1.4366 |.0096785 |.0025064 |.0061908 |.017621
2 | 3636 |.0784360 |.0419350 |.1035800
3 |1 (1.3200 |.0026562 |.0 .0 .023106
2 | .2772 |.0715960 |.0 .0
4 |1 |1.4389 [.0103630 |.0030173 .|.0074527 {.017101
2 | .3638 |.0914080 |.0535870 |.1323600
5 |1 |1.4381 |.0100030 |.0025064 |.0061908 |.017290
2 | .3665 |.0848280 |.0419350 |.1035800
6 |1 [1.4385 {.0101320 [.0026026 |.0064285 |.017192
12| .3665 |.0873140 |.0441740 |.1031100
7 |1 |1.4389 |.0101650 |.0025064 |.0061908 |.017125
2 | .3679 |.0880240 |.0419350 |.1035800
8 |1 [1.4393 |.0102940 |.0026026 |.0064285 |.017027
2 | .3680 |.0905100 |.0441740 |.1031100
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Table IV.3 Two-group dlfqulOn constants for
2D-IAEA benchmark problem.
(BZ* 8x10~4cm—2 ).

f 2] <2l - -
zone pl p? Zﬂ ZO_.ZQ 02:/ 7(1 Xz material

1 1.5 .4 }.02 |.o1 {.08 |.135] 1..] .0 |fuel 1

2 -1.5f .4 }.02 |.01 [.085 |.135} 1. | .0 |fuel 2

3 1.5 .4 }.02 |.01 |{.13 }.135| 1.} .0 |fuel2+rod

4 2.0} .3 1.04 }.0 .01 .0 0. .0 jreflector
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