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ABSTRACT 

THE FINITE ELEMENT RESPONSE MATRIX METHOD FOR 
COARSE MESH REACTOR ANALYSIS 

by 
Horacio Nakata 

Chairman: William R. Martin 

A new technique is developed with an alternative 
formulation of the response matrix method implemented . 
with the finite element scheme. As in standard response 
matrix methods, the reactor core is partitioned into 
several coarse meshes and the global solution is obtained 
imposing continuity of partial currents across the bound­
aries of the coarse,meshes. 

The finite element method, with, quadratic Serendipity 
elements, is applied in the local calculations(for each 
coarse mesh.) . The weak form of the inhomogeneous diffusion 
equation is then solved for prescribed partial currents 
on'the boundary. The local calculation results are used 
to generate the response matrices which are then used in 
the global solution for the partial currents and fluxes. 
The partial currents and fluxes in the global calculations 
are independently expanded in quadratic or cubic Serendi-



pity finite element basis functions. The equations for the 
global expansion coefficients are solved using Gauss-Seidel 
iterations until a converged partial current distribution 
is obtained. 

The response matrix method in the present formulation 
includes response matrices due to both incoming partial 
currents and sources (inscatter+fission), thus decoupling 
the response matrix generation from the neutron multipli­
cation factor. 

To evaluate the performance of the finite element 
coarse mesh, method the assembly averaged power distribution 
and detailed neutron flux distribution for two difficult 
and realistic problems., the 2D-IAEA benchmark problem (zone-
loaded PWR) and a Biblis benchmark problem with checkerboard 
loading, have been obtained. The results indicate that the 
proposed method yields satisfatory accuracies with, relative­
ly large coarse mesh. size. Furthermore, the use of the 
finite element method for the response matrix generation 
allows the consideration of different geometries (. such as 
triangular geometry- for fast reactors), the treatment of 
spatially dependent cross sections for burn-up calculations, 
and the treatment of local heterogeneities.Finally, the use 
of separate matrices for currents and sources eliminates 
the expensive regeneration of the response matrices for 
eigenvalue problems and has allowed conventional solution 
techniques for multigroup problems. 
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CHAPTER 1 
INTRODUCTION 

The development of the nuclear industry during the 
past few decades has been accompanied with steadily in­
creasing economic restrictions and safety requirements. 
These constraints place demands on nuclear analysts 
because one needs to know the neutron flux distribution 
within the reactor in order to perform the various safety 
and economic analyses.. And in order to keep pace with 
these demands they have strived to improve the accuracy 
and computational efficiency of calculational methods for 
determining the neutron flux distribution in a reactor. 

As the complexity and size of power reactors increase 
the well-known and reliable techniques become less prac­
tical to be used on a routine basis for neutronic analyses, 
whether used as part of an economic analysis to optimize a 
fuel management scheme or to determine detailed fuel pin 
power profiles for a safety analysis. Thus, there is a 
need for more efficient yet sufficiently accurate techni­
ques to substitute for the reliable but expensive fine 
mesh diffusion theory codes (e.g., PDQ-7^) to determine 
the neutron flux distribution in the reactor core. Con­
sequently, research in the area of neutronics methods 
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development has been an active area for many years and will 

continué to be an active area for many years. 

The simplicity of the finite difference equations and 
(2-4) 

the relative efficiency of the well-known methods ' to 

solve the associated linear algebraic equations have been 

the major advantages of the fine mesh finite difference 

method. In addition, detailed pin power distributions 

which agree very well with, measured power profiles can be 

obtained because the mesh size is comparable to the fuel 

pin pitch. The spatial dependence of the neutron flux is 

approximated by a low-order Taylor series and the solution 

is obtained imposing neutron balance in the fine-mesh 

subject to interface continuity and external boundary con­

ditions. However, since it is a low order approximation 

the computational time necessary to obtain the solution 

tends to become excessively long for mesh spacing typi­

cally used in a global Ce.g., 1/4 core or full core) fine 

mesh calculation. 

Thus fine mesh calculations are impractical for routine 

two-dimensional global calculations and out of the question 

for three-dimensional global calculations, and emphasis 

has been placed on developing computational methods to be 

used on a relatively coarse mesh, on the order of several 

diffusion lengths, compared to fine mesh. These methods 

are appropriately termed coarse mesh methods, and they 

cover a wide range of approximations, ranging from 
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empirical parameter fittings to sophisticated higher order 
finite element methods. In the past decade a number of 
coarse mesh methods have been developed and due to the lack 
of an unifying analysis of the existing methods, precise 
and unambiguous classification of these methods becomes 
difficult. But In the next section an attempt is made to 
define representative broad categories In which most of the 
present coarse mesh methods may be included. 

1.1. Coarse Mesh Methods 
Basically the coarse mesh methods which have been 

developed or are still under development can be divided 
in four broad groups:^ coarse mesh finite difference 
methods, flux synthesis, methods, nodal methods, and re­
sponse matrix methods. But some of the recent coarse mesh 
methods defy precise characterization because they combine 
some ideas of these basic methods, e.g., nodal collision 
probability methods, coarse mesh synthesis method, nodal 
expansion method, coarse mesh expansion method, nodal 
Green's function method, etc: But the broad common goal of 
all these coarse mesh methods has been to satisfy the 
accuracy requirements for reactor design calculations, 
usually quoted as a few tenths of a percent for the neutron 
multiplication factor and within a few percent for the 
local power distribution, while avoiding the excessive 
computational expense characteristic of fine mesh methods. 
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The coarse mesh finite difference method is 

based on the fine mesh finite difference scheme, but the 

number of unknowns is reduced by using a coarse mesh with 

appropriate parameter corrections. The parameter correc­

tions have been obtained by a wide range of techniques: 

empirical fittings,, analytical calculations and finite 

difference solutions. Higher order approximations for 

the neutron flux expansion inside the coarse meshes have 
(7 8 J 

also been considered. ' 1 

Flux synthesis methods, either single- or multi-
(9—12) 

channel , have been developed in the attempt to 

reduce the computational time and still retain satisfac­

tory accuracy. The procedure is to relax the spatial 

discretization in the direction parallel to the fuel ele­

ments, taking advantage of the fact that the flux is rela­

tively smooth in this direction due to the lack of spatial 

heterogeneities;. The spatial distribution of the neutron 

flux in the reactor is. obtained by expanding the unknown 

solution in terms of a few local solutions of two- ; 

dimensional finite difference equations, where the expan­

sion coefficients, are determined by a variational principle. 

Closely related to the coarse mesh finite difference 

methods are the nodal methods.^ 6' 1 3 - 1 8* The basic deriva­

tion of nodal methods is based on the concept of neutron 

balance, which, is formulated in terms of integral quanti­

ties such, as average neutron flux and average current. 
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Different approaches are used in order to determine the 
relationship between the neutron flux in the node and 
neutron current on its faces. Early methods^ were 
limited by the assumption of constant nodal fluxes, but 
later improvements have considered spatial dependence 

( 13—18 ) 
inside the nodes. 1 In particular, the nodal expansion 
m e t h o d a n d the nodal Green's function m e t h o d a s s u m e 

(15) 
x-y-z separability of the flux distribution in the 
nodes and the nodal coupling coefficients are calculated 
by combining several one-dimensional calculations. The 
combining coefficients are determined by weighted residual 
techniques and continuity conditions. The coupling between 
directions is taken into account by expanding the trans­
versal leakage in quadratic polynomials with coefficients 
dependent on the average transverse leakage in adjacent 
nodes. 

The primary results computed in nodal methods are 
average fluxes and average currents for the nodes. However, 

(14) 
higher order interpolation schemes *' have been developed 
to obtain the detailed spatial distribution of the flux 
inside the nodes from the information contained in the 
average quantities. 

(21 22) 
The finite element method ' widely used in 

structural analysis has. been applied to reactor analy-
(23-31) 

sis. Since high order approximations can easily be 
incorporated, the element volume can be relatively large, 
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resulting in a reduction of the number of unknowns.. The 
flux is expanded in piecewise polynomials within each 
element and the system of equations to be solved for the 
expansion coefficients is obtained by an appropriate varia­
tional principle or integral law formulation. The flexi­
bility in the choice of the finite element basis functions 
allows the method to be applied to quite irregular geo­
metries including local mesh refinement within a large 
homogeneous region. Furthermore the theoretical founda­
tions of the finite element method are well esta-

(21 27) 
blished ' and definite analytic error bounds can be 

« 

predicted for most applications of interest. And since 
the polynomials are defined in a piecewise fashionfcon­
tinuity or jump.conditions may be readily incorporated 
at the interfaces between regions. 

However, there are also some disadvantages with the 
finite element method. The irregularity of non-zero ele­
ments in the coefficient matrix may result in complicated 
storage and addressing schemes. For large problems the 

(18) 
direct inversion may not be economical and iterative 
techniques may have to be used. Eigenvalue problems can 
be solved by the power method but some of the acceleration 
schemes regularly used in finite difference methods to 

(34) 
accelerate outer iterations ' may not represent real 

(29) 
advantages for finite element methods. 
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The response matrix method can be considered a parti­
cular class of nodal methods. Basically the procedure is 
to divide the reactor into several coarse meshes within 
which explicit solutions for the neutron flux distribution 
for a given incident current distribution is obtained. 
The neutron flux distribution can then be used to determine 
the response functions (e.g., outgoing current distributions) 
for these small domains. Thus the net result is a 
"response matrix" corresponding to the change in the out­
going current (the response) due to a change in the input 
current. It is expected to save in the global time by 
solving the reactor equation over several small domains 
rather than solving the problem at once over the entire 
domain. For reactors with only a few types of fuel elem-
ments the response matrix method can yield significant 
savings in computational time. 

The response matrix method has evolved from the ori­
ginal study of reflection and transmission of light through 

(32) 
a pile of plates by G. G. Stokesv 'in 1862,and subsequent 
applications of response functions were made in several 

(3 3) 
fields. The neutron transport equation was treated by 
a similar principle known as the principle of invariant 

(34) 
imbedding , which quickly led to several additional 

(35-44) 
studies in this area. 
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In the early stages of development the response 

matrix was generated by analytical solutions of the diffu­

sion equations. However the application of the response 

matrix method to lattice calculations necessitated the use 

of more elaborate transport methods for determining the 

response matrix, such, as collision probability :; 

m e t h o d s ( 3 7 , 4 0 ~ 4 2 ) , Monte Carlo method* 3 8' 4 0* or discrete 
(39) 

ordinates methods. The generation of response func-
(33) 

tions by experiment has also been suggested. 

The partial currents which are related by the response 

matrices and which, connect the coarse meshes in the global 

calculation have, been from the beginning been treated as 

spatially dependent.* 3^* Burns and D o m i n g * 4 ^ ' 4 6 * used 

a local Green's function for the diffusion-removal operators 

to generate response matrices which incorporated high order 

approximations for homogeneous rectangular coarse meshes. 

The flux and the partial currents are expanded in poly­

nomials and the expansion, coefficients are determined by a 

weighted residual technique. The high computational cost 

of this method led Lawrence and Dorning'^^ to develop 

the nodal Green's function method mentioned above. In the 
higher order response matrix method of Weiss and 

(43) 

Lindahl v , the diffusion equation with, a given incident 

partial current distribution which, is itself expanded in 

Legendre polynomials is solved over the node via Fourier 

series expansion. The response, the outgoing partial 
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current distribution, is then a separate Legendre expan­
sion. Similar to the local Green's function method, the 
generation of the response matrix is limited to homogeneous 
rectangular coarse meshes. Thus the effect of hetero­
geneities (e.g., burna.ble poison} on the outgoing partial 
current cannot be simulated. 

Each one of the above mentioned coarse mesh methods 
adopts a distinct metodological approach, with associated 
advantages arid disadvantages. Thus one might expect that 
a method which combines- some of these basic methods, 
may benefit from the favorable characteristics of the con­
tributing basic methods. Of course, an unfavorable result 
may occur by combining the different methods in that the 
theoretical foundations of the resulting method may be 
weakened or lost completely and some of the undersirable 
characteristics may be emphasized in the combined method. 

Although it is difficult, if not impossible, to single 
out a particular coarse mesh, method which clearly outper­
forms the other methods, some of the most efficient methods 
have been obtained through a combination of the basic 
methods discussed above. In particular, two successful 
combined methods are the nodal expansion methods and the 
nodal Green's function method which were described above as 
being nodal methods. They are basically nodal methods 
with some ideas- of the finite element methods. The one-
dimensionl neutron fluxes are expanded in piecewise poly-

p- M U C L E A R E 8 f 
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nomials and the coefficients are determined by a weighted 
residual technique. 

The present investigation also considers a combined 
method. The finite element method is applied in the con­
text of the response matrix method. In the next chapters 
the details of the adopted approach, is presented. 

1.2. Research Objectives 
The development of a new coarse mesh method should 

take into account existing methods as well as the goals 
and objectives that any coarse mesh method should attempt 
to meet. The above literature survey has described the 
current status of coarse mesh, methods and now a brief 
description of the outstanding problems in the area of 
coarse mesh analysis will be given. These problems, which 
may be considered as objectives, and goals for future work 
in the coarse mesh area have been presented succinctly 
by Froehlich.: v- * . 

1) Improve the ability to predict local quantities 
(e.g., spatial distribution of the neutron flux 
and powerI ; 

2) Allow efficient modelling of feedback, effects 
(e.g., Doppler and void coefficients); 

3) Account for the effect of depletion induced spatial 
cross section variations; 
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4) Allow for hexagonal or triangular geometry 
(e.g., fast reactor calculations); 

5) Account for the effect of heterogeneities and 
improve the methods for homogenization (e.g., 
calculation of equivalent homogenized group con­
stants); . 

6) Contribute to a unifying theoretical foundation 
for coarse mesh: methods. 

While the current research effort will not address all 
of the above concerns, the objectives of the present inves­
tigation are to contribute to the solution of several of 
the above mentioned problems presently encountered by the 
coarse mesh methods when used in standard reactor design 
analysis calculations. In particular, the current inves­
tigation can be readily extended to address: prediction 
of local quantities in the presence of heterogeneities, 
the capability to include the effect of depletion induced 
spatial cross section variations and treatment of tri­
angular geometry for fast reactors. 

1.3. Summary of Investigation 
The present investigation starts from the diffusion 

theory approximation and applies the finite element method 
to an alternative formulation of the response matrix 
method.This alternative form has a significant advantage 
in that it eliminates the need for the expensive recal-
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dilations of the response matrices in the eigenvalue 
problems, as will be discussed in more detail in Chapter 2. 

Briefly the reactor is partitioned into coarse meshes 
and the solution for the diffusion equation inside each 
coarse mesh, is obtained by the finite element method and 
the response matrices are generated. As will be described 
in more detail later, there are two basic response matrices, 
one relating to the outgoing partial current due to an 
internal source (fixed source, fission source, or inscatter 
sourse) and the other giving the outgoing partial current 
due to diffusion of the incoming partial current. The 
response matrix of each coarse mesh is then projected on 
separate basis functions defined on the reactor core and 
the neutron flux is obtained by- an iterative scheme. 

With this approach, some advantages inherent to the 
finite element method can be exploited. The geometry of 
the coarse meshes can be rectangular or triangular and even 
the extreme case of an irregular boundary can be accommo­
dated. Particular regions can be treated with higher 
detail than the rest of the domain with local mesh refine­
ment. Spatially dependent cross sections can also be con­
sidered in this approach with little increase in computa­
tional cost, a feature which is desirable for burn-up 

(23) 
calculations or for heterogeneous nodes. Local quan­
tities such as the neutron flux and power distributions 
are explicitly defined over the entire reactor core in 
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terms of a function expansion, which is not the case for 
( 18 ) 

many of the coarse mesh methods. 
The inherent disadvantage of the finite element 

method in large reactor problems, the irregular large 
matrix and less highly developed schemes for matrix 
inversion, is avoided in the present investigation because 
the finite element matrix equations are solved only at the 
coarse mesh level, albeit several times. 

A brief description of the body of the present 
investigation is presented below. 

In Chapter 2 the theory and the alternative formula­
tion of the response matrix method is presented. 

The finite element solution for the diffusion equa­
tion in the coarse mesh and the scheme .to generate the 
response matrices is described in Chapter 3. To implement 
the finite element response matrix method, the basis func­
tions and the iteration schemes, for both inner iterations 
and outer iterations, are presented in Chapter 4. 

Chapter 5 shows the results of the test calculations 
using the proposed method for two types of reactor pro­
blems: a fixed source problem in a simplified bare reactor 
and two two-dimensional benchmark eigenvalue problems. 
Conclusions and recommendations for further study are 
presented in Chapter 6. 

The acceleration schemes, asymptotic source extrapo­
lation and the Chebyshev polynomial method, applied to 
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the finite element response matrix method are presented 
in Appendix I. 

A variational formulation for the diffusion equation 
solution is shown in Appendix II. 

Appendix III gives an interpretation of the block-
Jacobi spectral norm for the response matrix method, and 
the diffusion group constants for evaluation of the 
present investigation are presented in Appendix IV. 



CHAPTER 2 

RESPONSE MATRIX METHOD 

In Sec. 2.1 the basic theoretical formulation of the 

response matrix method is. presented following closely 
(A) 

the work of Weiss and Lindahl v ' , and to illustrate the 

method, a simple 1-D slab reactor is examined. In Sec. 2.2 

an alternative formulation of the response matrix method 

is presented. 

2.1. Theory 

Consider the domain jf2 in which the solution to the 

neutron transport or diffusion equation is sought and 

divide into N subdomains , i=l,...,N , called 

coarse-meshes. Each coarse-mesh -̂ 2/* is bounded by a 

piecewise smooth boundary <f-&C with the outward directed 

normal vector n(r &) , where r s is the position vector on the 

boundary. 

Define compact or coupled system as a system in which 

the domain _/2. is. simply connected and bounded by a piece-

wise smooth boundary cT-^2»and the loose system a system in 

which none of the boundaries has points in common 

calculations are concerned with coupled systems whereas 

loose systems may be encountered in criticality problems, 

Accordingly most reactor 

15 
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such as the analysis of fuel storage arrays. The-deriva­
tion shown below, while applicable to a coupled system, is 
readily adapted to a loose system with only minor modifica­
tions. 

It is assumed that an arbitrarily accurate solution 
for the neutron.transport or diffusion equation can be 
found in coarse-mesh X2/ subject to the boundary conditions 
on cG?/ , corresponding to the irradiation of Jj2/by an 

arbitrary current (rs).. In transport theory jT(r s) cor­
responds to the angular flux at the boundary in the direc-
tion _rz such that Si- •nCrs.)' < 0, and for diffusion theory 
J^(rs) is the partial current directed against the normal 
vector to the boundary <T-^/ at r s. 

The emerging current j£(r s) from the boundary <TS2/ 
due to the irradiation of current J..(rs) on can be 

obtained from the above solution for the neutron flux. In 
the transport theory J..(rs) is the angular flux at the 
boundary in directions JX such that £L *n(rs) y 0, and 
in diffusion theory j t(r s) is the partial current in the 
direction of the normal to the boundary cTL/2/ at r s. 

For the sake of simplicity j t(r s) will be referred to 
as the outward partial current and jT(r„) as the inward 
partial current regardless of the approximation utilized 
to obtain the neutron flux. 

Because of the linearity of the transport and diffusion 
equations the relationship between jt(r s) and CK (rs) can be 
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concisely expressed by a linear transformation 

(.2.1) 

where J^o(rs) is the outward partial current due to the 
external source inside the coarse-mesh. The determination 
of the kernel IRj. (r^—^rs). is one of the objectives of the 
response matrix method. This kernel depends only on the 
geometrical and material properties of the coarse-mesh ', 
e.g., the diffusion coefficient and the absorption and 
production cross sections. 

Fig. 2.1 Illustratipn of doma,in JTZ , subdoraain 
and inward and outward partial currents. 
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Define H., (ri _»» . . . . „ , 

l k __ r s ' ' i,k=l,...,N , as the proba­

bility that a neutron leaving the surface cT-/2^ at r£ 

reaches r s on the surface . If the H ^ C ï^s -> \fs) 

are known, the inward partial current jT(r s) for the 

coarse-mesh -TIL can be related to the outward partial . 

currents J*(r sj from the corase-meshes —¿2̂  , k=l,...,N, 

by the relationship 

N 

J/fe)~2 f Hit faj)^ C2*2) 

Hi 

For coupled systems (r s _> r s). is easily obtain­

able by imposing continuity of the partial currents across 

the boundaries, but for loose systems additional calcula­

tions are needed. 

It was assumed that the solutions of the transport or 

diffusion equations for each, coarse mesh. _J2£ are known for 

an arbitrary inward partial current J^,(r s). Then the 

neutron flux in the coarse mesh _(2/ can be expressed in 

terms of the kernel M^.(rs -*- r)., 

<£/*)= j M.fAj-^s)- J} fa) J* + §Je fa) «-3> 
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where ^ £ 0 ( £ ) is the neutron flux due to the external 

source inside SZ/ ,' and M.j.(rs -> r) is generated during 

the solution of transport or diffusion solution in the 

coarse mesh -/2/ . 

Therefore the flux for the entire domain is obtained 

if either J^.(xsl or J^(jcslf i=l,...,N, are known. 

Equations (2.1)., (2.2), and (2.3) comprise the con­

ventional formulation of the response matrix method for the 

solution to the proposed problem. 

As an example of the response matrix method, the 

one-dimensional slab eigenvalue problem is presented.. The 

external source is then zero and the diffusion equation 

is solved analytically, subject to unity inward partial 

current on a face of the slab of thickness h. From the 

neutron flux solution, the reflection and transmission 
(55) 

functions are calculated by Weiss ' as 

sin 0 
si a n d fc "SinC3h* 0T' . r e s P e c t ± v e y ' o r 

and t = (i-S2) exp f-/<$) t respectively, 
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where D is the diffusion coefficient, 
2 

f/f is the migration area, and 

k is the ratio of infinite multiplication factor 

and effective multiplication factor (eigenvalue). 

The partial currents on the face of the slab can 

then be related by a response matrix as 

fa) 
• 
¿74) 

-t a J7O) 
* 

2.2. Alternative Formulation 

Unfortunately the response matrix method .as formu­

lated above is not in a convenient form for application to the 

eigenvalue problem (e.g., determination of the neutron 

multiplication factor, k^^).. The kernel R̂ (.rs —> r s) is 

dependent on the neutron multiplication within the coarse 

mesh -O-i and since the fission source is scaled by the 

eigenvalue, the kernel |R^(rs r s) has to be generated 

several times during the course of the solution to the 

eigenvalue problem. 
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This investigation treats an alternative formulation of 

the response matrix method wherein the expensive recalcu­

lations of the kernel in the eigenvalue problems are eli-

minated by considering two kernels: |R.. Cré —>r_) and 

IR?(r->r s). They are dependent only on the diffusion coef­

ficient and the absorption cross section of the coarse 

mesh ~S2£ , and they are independent of the production 

cross section (.fission + inscatter) . This allows the 

non-linearity of the outward partial current caused by 

the fission source and the inscattering source to be 

transferred to the iterative scheme used to solve the 

eigenvalue problem or the fixed source problem as shown in 

the next section. 

As a result of the linearity of transport and diffu­

sion equations the. outward partial current jt .(r s) can be 

given by the following linear transformation 

(.2 .4) 
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where S^(r) is the neutron source within the coarse 

mesh -¿2/ due to the fission source, the inscatter source, 

and the external source. For eigenvalue problems the 

external source is absent and the fission source is 

scaled by the inverse of the multiplication factor, k eff• 
j-

The kernel R̂ . (Xg -> r g). gives the outward partial 

current response due to the diffusion of an inward partial 

current in the coarse mesh. —(2/ , while the kernel R?(r_>-r s 

gives the outward partial current response due to diffu­

sion of neutrons^ generated in all kinds of sources within 

the coarse mesh. ~/2/ . 

In this alternative formulation of the response matrix 

method the definition of the kernels H ^ C ^ —*- r s) ; 

i,k=l,... ,N _, is maintained and the relationship given 

by equation (.2.2) remains "unchanged. 

The neutron flux in the coarse mesh —^2/ will then 

be, given by 

(.2.5) 

u S 

where thé kernels M £(x s —j>r). and M^Cr'—>r). are generated 

as byproducts during the generation of the kernels 

|R? (r,L — r s ) and (R^fr -*-x s) . 
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The formal solution of the response matrix method is 
represented by the equations (.2.2), (2.4) and (.2.5) in the 
alternative formulation versus equations. (2.1) and (2.2) for 
the conventional formulation described earlier. 

The response matrix method is applicable whenever 
the kernels are computable, especially — ^ s J an<^ 
IRj-fr -> r g). The kernel (r^.—> r s) may impose some 
difficulties for loose systems but for coupled systems 
which comprise most of the practical problems in reactor 
calculations only interface, continuity conditions across 
the boundaries of the coarse meshes may suffice and the 
kernel can be generated without any difficulty. The genera-
tion of the kernels (r s_>r) and Mi(r'-_> r) is solely 
dependent on the computational scheme used to generate 
the kernels R. (r * — r c ) and (JR.. (r —> r^) and as such does 
not represent an additional computational burden. 

The present investigation is developed on the basis of 
this formulation of the response matrix method because it 
is in a form suitable for use in the eigenvalue problem 
and can also be used for the fixed source problem. 

The multigroup eigenvalue problem can be treated as 
being composed of multiple fixed source problems, where the 
source includes any type of neutron production, including 
the fission source scaled by the multiplication'factor. 
Since the kernels depend only on the diffusion coefficients 
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and the absorption cross section the response matrices 
need be generated only once. 

2.3. Numerical Approximation 
The formal solution for the alternative formulation 

of the response matrix method may be obtained by solving 
equations (2.2), (.2.4) and (.2.5). However, the implemen­
tation of the response matrix method on a digital computer 
requires various, approximations to allow the equations to 
be numerically manipulated. 

One approach which, is utilized in the present investi­
gation is to use-a weighted residual method to approximate 
the response matrix equations in a form which is amenable 
to numerical computation,-. 

Let a coarse mesh S^i contain L nodes conveniently 
located within' its volume -/2/ , and define the polynomials 

(r) , ^=1,...,L, with unitary value at the node k 

and zero at the remaining nodes. Also let a coarse mesh 
_J2/ contain K nodes on its boundary </j2/ and define the 
polynomials ^ ^ ( j : s l , k=l,...,K, with unitary value at 
the node k and zero at the. remaining nodes. It should be 
noted that in the present discussion the term "node" cor­
responds to a point, not a region of the problem domain. 

The partial currents, the neutron flux and the neutron 
source can be approximated for each coarse mesh _ _ , by 
an expansion in the appropriate basis polynomials 
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(i.e., boundary polynomials or volume polynomials) 

f feJ = Z %l , ?s , (2.6) 

i i 

where Jj^' and are the partial currents on the 

boundary node k., the neutron flux value and the neutron 

source value at the volume node $ , respectively. 

However, the partial currents ji(r s) are defined 

according to the orientation of the-normal Jl^s) o n *-he 

boundary. Since nC^s) * s discontinuous along the edges 

or on the corners, let the boundary polynomials 
<r s>, 

k=l,...,K, XSQSJ2/, i=l,...,N, be defined piecewisely 

such that the discontinuity of ji(r„) on the corner or 

along the edges are explicitly accounted for. 

The expansion coefficients Jj'] c( r
s)' i=l,. • • ,N; 

k=l,...,K, can be determined by requiring the residuals of 

the approximation of equation (2.4) and equation (2.2) to 

be orthogonal to the set of surface polynomials ^ j j i ( r
s ) » 
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(2.9) 

i=1,...,N;r G<Ù2/;T 6-J2/ . 

and requiring the residual to be orthogonal to 

"í^/(r¿),k' = 1,... ,K, one obtains 

(2.10) 

From equation (2.4) the residuals can be defined as 
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where 

k' ,k=1,... ,K, is a KxK matrix, 

k',k=1,...,K, is a KxK matrix, 

k'=1,...,K;1=1,...,L, is a KxL matrix, 
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^ If IR̂  and jR̂. are redefined in order to incorporate 
T^r-^ , equation (2.10) can be written as 

+ 

Similarly from the. equation (2.2), defining the resi­
duals and requiring them to be orthogonal to "^^.(Xg) , 
k'=l,...,K, one gets 

N 

TfsTs ' H/j C2.12) 

i, j = 1,... ,K;rseJl2t-;T^ 6 Jlflj ;is a KxK matrix, 
and redefining .H.̂ . in order to incorporate 

<T;=ZHJ'$ (2*13) 

For the coupled systems, however, the matrix H. . can be 
easily incorporated in the computational scheme simply by 
reindexing the outward partial currents, and no weighted 
residual calculation is needed. 

The neutron flux expansion coefficients i 

jfi=l,...,L, can be determined by requiring the residuals of 
the approximation of equation (.2.5) to be orthogonal to all 
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the functions "l̂(r) , /=1,...,L,/T eJ2/ ; 

5f *5* = Mf- J/ + Md-^i (2*14) 

where 

is a LxL matrix. 

^'=1,...,L; k.=l.,.,K, is a LxK matrix, 

^jJ( =1,...,L, is a LxL matrix, and 

and redefining Mf a n d 4 t n o r d e r t o incorporate T̂ T 
one gets 

^/ - ^df% • (2*15) 

The compact representation of the equations (.2.111, 
(.2.13), and (2.151 can be obtained by defining 

(7~~= ca{ (jj ; f/.^ij '"a ( K x N ) vector, 

$J ' 3 CLXN> V6Ct0r' 
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J* ~Cof (-^J-j / , a (LxN) vector, 

and rewriting the equations as 

j~-H -J 

(.2.16) 

<~\ 

12.17) (1.4 

(2.18) (3.5^ 
where 

,is a (NxK)x(NxK) matrix, 

, is a (NxK)x(NxL) matrix. 

, is a (NxL)xCNxk') matrix. 

, is a (NxL)x(NxL) matrix. 

and /^/is a (KxN)x(KxN) matrix, which for coupled systems 
is a matrix composed of block permutation matrices of 
dimension KxK, and also incorporates the boundary condi­
tions of the domain —Q . 
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Equations (2,16), (.2.17), and (2.18) are then the 

weighted residual formulations of the original response 

matrix equations (2.4), (2.2), and (2.5), respectively, 

and are in a form suitable for numerical solution, as will 

be described in the. next section. 

2.4. Solution Algorithms 

The solution of the response, matrix method represented. 

by the equations C2.16), C2.17) and (2.18) requires only 

+ — 

one type of partial current, either J or J , to be 

determined. By inserting the equation (.2.17) into the 

equations (2.16)'and C2.18). the problem is given as 

f-g^M-f • T'- C -(¿.19) 

and if (l[-ff^'(lf) t.s invertible, where $~ is the 

(NxK).x(.NxK). identity matrix, the solution can be directly 

obtained as *~ 

For practical problems the dimension and the 

complexity of the K_ «H matrix imply that direct inversion 

is impractical. The alternative is the use of iterative 
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methods, such as the Jacobi method, the Gauss-Seidel 
(2-4) 

method, or the Successive Over-relaxation method. 
The convergence of the iterative methods can be 

guaranteed if the spectral radius of the iteration matrix 

In terms of more accessible quantities, the infinite 
norms, the sufficient condition is 

and for a compact system with no incident current on its 
boundaries, f IH f = 1, the sufficient condition is 

Recalling the. definition of fR1" , the sufficient 

condition now is 

I I / ; < i for all i=l,...,N. 

The general solution algorithm can be given as 
Step 0 - Guess arbitrary non-negative J ^ and s ' ° ' 

step i - J«*L t ^ 
Step 2 - J~lt)^/H'tM J 
Steps- f}^jM<JM +M*&n~"J 

Step 4 - Update S ( r )from §^ A > 
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It should be noted that the above algorithm does not 

depend on the construction of the basis functions, except 

that they have unitary value at the nodes they are associ­

ated with. In addition, the above formulation is formal 

in the sense that the response matrices iRi and ffif were 
given in terms of the response kernels /jfx^f/r^ -^rfs) and 

fKi (•Z-'* ^ ) ,which have been defined in only a formal 

sense via equation (.2.4). As will be seen in the next 

chapter, the finite element method is employed at the 

local(assembly) level to generate the response matrices 

used in the global solution algorithm outlined above. 



CHAPTER 3 
FINITE ELEMENT RESPONSE MATRIX METHOD 

The previous chapter presented the general formula­
tion of the response matrix method and a description of a 
weighted residual approach to cast the resultant response 
matrix equations in a form suitable for numerical approxi­
mation. The discussion was. quite general and did not 
depend on the exact form of the approximation polynomials. 
In this chapter the specific method utilized in the present 
investigation to determine the response matrices is 
described. In particular, the finite element method is 
employed to solve the one-group diffusion equation in the 
coarse meshes, thereby generating the response matrices. 
Therefore, the coarse meshes, are assumed to be composed 
of materials with, properties compatible with the assump­
tions of diffusion theory: the absorption cross sections 
are expected to be relatively small compared to the 
• scattering cross sections. This assumption is easily 
satisfied in most reactor problems since the coarse meshes 
are usually defined over an entire assembly or part of 
an assembly, where heterogeneities are homogenized and the 
assembly (or partial assembly), is treated as one material 
with equivalent homogenized cross sections, 

34 
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3.1. Galerkin Formulation 
The one-group diffusion equation is to be solved in 

each of the coarse meshes J ^ , n=l,...,N, (the assembly 
level calculations) 

where D (r) is the diffusion coefficient, 
«Z"an(r) is the total absorption cross section, 
s lr) is the source term, 

subject to the irradiation of inward partial current 
jn(.rs). on the boundary <PfZ t 

where n(r ) is the vector normal to the surf ace <f-^m t *—• s 
and to interface conditions of continuity of current 
and flux. 

In order to formulate the Galerkin approximation, or 
weak, form, of the problem the space of trial functions is 
defined as 



and for f (r). , g(.r) £ H~ the inner product is defined as 

and the boundary inner¡product as 

Multiplying the equation (3.1) by an arbitrary element 

of the trial function space , ^ ( £ ) / a n d integrating 

over -XL*, , one obtains 

By Green's theorem the first term of equation (3.3) 

can be written as (details in Appendix II ) 

Now use the boundary condition (3.2) 
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and insert it into the last term of equation (3.4). to 
obtain 

13.5) 

Now combine equation C3.5) . and equation (3.3) to 
obtain the final result, ^ 

+ii$(*)Z(*)J* = WJ& l3'6> 

The solution ^ n
 t o equation ( 3 . 6 ) which is valid 

for all ^j 'QO € is the weak solution to the original 
diffusion equation. Note that the original boundary con­
dition, equation • (.3. 21 , is incorporated directly into 
the weak form and hence is a natural boundary condition. 
That is,the space does not need to obey the boundary 
condition in order for the weak solution to satisfy (in a 
weak sense), the boundary condition. 
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Defining the bilinear functional 

the Galerkin approximation can be succinctly written 

*(Lt)~(s-> V ,%eUl: t 3 . 7 i 

The same result could be obtained by minimizing the 
quadratic functional 

The proof is presented in Appendix IT. 

3.2. Finite Element Solution 
The weak form, Eq. (.3.7), of the diffusion equation 

is in a form suitable for solution by the finite element 
method. Specifically, the Ritz approximation is utilized, 
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in which the trial functions 7^ belong to a particular 
II 1 * 

finite-dimensional subspace S '• contained in H2 , 

In order to construct the finite element subspace 
the coarse mesh domain J*2<n is partitioned into M sub-
domains, -O.*,^ , m=l,...,M, and the elements of S are 
polynomials defined over the subdomains J2mtrr) , m=l,...,M, 
which are continuous across the subdomain boundaries.^ 
Also let the domain contain N Q nodes, and define (r) , 
i=l,...,Ne, £ S h, functions with unitary value at 
the node i and zero at the remaining nodes. The Lagran-
gian finite element method is characterized by choosing 

as yjji (%) ' t n- e continuous piecewise polynomials. These 
polynomials are the basis functions for the subspace S**, 
since every member of S can be given as a combination of 
the ' ^ ( r ) . 

If the solution y (r). is then sought within the 
h 

space S , (p (r) can be expanded in the basis functions 
for S h as 

The Ritz-Galerkin approximation is obtained by in­
serting the approximation ('3.8) into the weak form (3.7) 
and requiring C3.7-) to be true for all basis functions 
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Sfy/(r), j=l,...,N : 

0^ 

for all ]=1 M.,,N , or 

for all j=l,....,N . 
An identical result may be obtained from the varia­

tional principle, as shown in Appendix II, by searching 
for. the stationary point in the space S , 

which is equivalent to minimizing the quadratic functional 
discussed above. 

Defining the vectors ^ and ivrt&) as 

Equation (.3.9). can be rewritten as a matrix equation 
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The linear matrix equation (.3.101 can be solved 
either by direct inversion or by iterative methods as long 
as A n is invertible. 

If A R is positive definite, x-A n«x ^>0, for x^O then 
A n is invertible and equation (3.10) can be solved. A n 

can be shown to be positive definite as follows. 
Assume an arbitrary ^'({L) ^ and expand 

*=1 

Now from the definiton of the bi linear functional 
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But 

and 

if 

which is the desired result. Therefore A is positive 

definite, thus invertible. 

Since A n is invertible, the solution can be expressed 

as 

C3.ll) 

and the flux in the coarse-mesh jf? is from (3.8), 
in 

http://C3.ll
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3.3. Response Matrices Generation 
In order to generate the response matrices from the 

solution (3.11) it is necessary to expand the response 
current, which is the outward partial current j ( rs^ l n 

an appropriate set of basis functions. In addition, it 
is necessary to determine the source term s

n(£.) a n ^ 
inward partial current j„(r c). — 

n & 

The outward partial current J n(Ts) ^ s expanded in 
piecewise polynomials defined on the boundary of the 
coarse mesh S-&m. Since j*(rs) is defined as the partial 
current in the direction of the vector n(r s) normal to the 
boundary ^ , it is necessary to exclude corners or 
edges of ' where n(r s) is discontinuous, and allow 
j^(rs) to be discontinuous at these points. Then the 
polynomials are continuous only along each side of 
for two-dimensional problems, or continuous on each face 
of <f-&(n for three-dimensional problems. 

Let the boundary contain N nodes and define 
% ,(.rs), i=l,...,N&, ,. functions with unitary 
value at node i and zero at the remaining nodes. For 
convenience the f\ • (ra) are chosen to be piecewise 
polynomials, continuous between corners or between edges. 
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Therefore the outward partial current can be expanded 
in the boundary basis functions, 

(3.12) 

The source term s (r) and the inward partial current 
n — 

j n(r s) from the assembly calculation can be equated to the 
sourceS (r) and inward partial current J (r_) in the 
global calculation as follows 

and 

where 

and 

(3.13) 

(3.14) 

are the global volumetric and boundary basis functions, 
respectively, and .S and J are defined in (.2.10). 
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Inserting the expression (3.13) into the definition 
of cf in (3.10) one obtains 

" - - • M l C" 

or 

~>rn — (3.15) 

where 

r 

is a NexL matrix. 
Similarly, inserting expression (3.14) into the 

definition of J ^ in (3.10) one gets 

or 

(3.16) 

where 

is a NgxK matrix. 
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Finally, inserting expressions (3.15) and (3.16) into 

equation (3.11), the flux can be expressed as 

-I 

t-l-Tpt-^+jJ^V-Jz . (3-i7) 

Since the desired quantity is the outward partial 

current j*-(xs.) on the coarse mesh boundary, one uses the 

diffusion approximation for the partial current. 

(3.18) 

Approximating j*(r a) and <^(x) by expansion expres­

sions (3.12) and (3.8) , respectively, and defining the 

residual y2(r s) as 

t_ i J _ i L. j (3.19) 

+ 

the outward partial current coefficients, j can be ob­

tained by requiring the residual y^(r s) to be orthogonal 

to the i ^ ( r s ) , i=l,...,N s, 

(3.20). 
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Defining the N_xN_ matrix 

equation (3.20) can be concisely given as 

% -£= U rd-JW-^ (3 ,21> 

Inverting the positive definite matrix 7v^ fs and 

substituting from equation (3.17) 

is a N sxL matrix, 
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and 

is a N gxK matrix. 
S J -

The response matrices R n and R n connect the assembly 
level outward partial current J*( r

s) to the global neutron 
source Sn(r) and global inward partial current J (r ) , 
respectively. However, what is desired are global response 

s J — 

matrices [R^ and JR̂  which connect the global outward 
^===+ 

partial currents J (r_) to the global neutron source and 
inward partial current. These can be obtained; by 
expanding the.assembly level outward partial current j +(r ) 

n s 
in the global basis functions ~~$s£ ^ r

s^' k=l,...,K; 
r g efj?m, as 

K -4=1 

But equation (.3.24) does, not have a unique solution 
+ ' + J k, k=l,...,K, because 1 (r ) is expanded in a more re-n s 
fined set of basis functions (the assembly level basis 
functions versus the global basis functions ~tPs~£ ^ rs^ * 
Therefore, equation (.3.24) will be satisfied in a weak 
sense by applying the weighted residual method. 

Recalling the expansion expression (3.12) for j*(r ) 
and defining the residual ^> (rg) as 
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the global expansion coefficient J + can be obtained by 
n 

requiring the residual f (r ) to be orthogonal to the 
S 

where 

is a KxK matrix. 

3 = ^»•• •> » 

is a KxN g matrix. 
Substituting j* from expression (3.23) and inverting 

the positive definite matrix T$f!^ , one gets 

where 
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and 

C = T^r, -75r& 
are the desired response matrices for the global partial, 
current calculations. 

s J~ 
The construction of the response matrices _M and. M-

for the global flux ^ can be obtained from equation 
(3.17) by expanding. the local neutron flux <Pn(£) in- ̂ -e--
global basis functions (r) , 1=1,. .. ,L; f? € J2m ? 

Again the expansion coefficients must be 
obtained by the weighted residual technique, and since. 
<^n(r) is given in terms of the basis functions ̂  f$)9 

one obtains in a similar manner, 

where ~ , defined in the equation (3.15) , 

and = (J^^fd) tyfflJsJ/j' ,1.1 ' = 1, • • • ,L. 
Substituting the equation (3.17) into the equation 

(3.27) 



51 

where 

and 

are the desired response matrices for the global flux 

calculations. 



CHAPTER 4 

COMPUTER IMPLEMENTATION 

4.1. Basis Functions 

The global basis functions for the neutron flux 

expansion and for the partial currents expansion in the 

reactor problem were defined in Chapter 2 for coarse 

meshes -/2m , n=l,...,N as 

¿=1,... ,K;vseS&tn , respectively, 

where L is the number of indexed nodes on the coarse mesh 

Slm i K is the number of indexed nodes on the coarse 

mesh boundary <fS2m , and the number of nodes, L and K, 

is dependent on the degree of the polynomials desired in 

the coarse mesh and on its boundary, respectively. 

In the present investigation the geometry of the coarse 

mesh was chosen as a rectangle, since most of the practical 

problems in the reactor calculations can be solved with 

this geometry, but extension to the triangular geometry 

52 
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does not impose any conceptual difficulties. 
In a rectangular coarse mesh a simple scheme to 

generate the polynomial elements, ~^"f^Jr /=1,...,L, 
of any degree is to form a direct product of univariate 
Lagrange polynomials, e.g., a (m+n)th degree element 

where 

— , 4 * > - ^ — , 

and (x^,yj) are the coordinates of the node . 
However the product of high order Lagrange polynomials 

results in a large number of internal nodes and tends to 
preserve very high order terms while neglecting some lower 
order terms. 

A polynomial generation scheme which preserves the 
low order terms in the high degree elements generates the 

(48 49) 
Serendipity elements. . ' Figure 4.1 illustrates the 
number and the location of nodes for quadratic and cubic 
Serendipity elements. 

It is convenient to define a local coordinate system 
for the polynomials and- simplify the calculation of 
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integrals which are transformed from the physical coordinate 

system to the local coordinate system. A convenient local 

coordinate system for rectangular elements may be defined 

by the following transformation, 

where (x .y ) are the coordinates of the center of an o J o 
arbitrary rectangle, and a and b are the dimensions of 

the rectangle. 

In the local coordinate system the quadratic 

Serendipity elements are 

1=1,3,6,8; 

' i=2,7; 

i=4,5; 

where ( J/ / 7Jf ) are the local coordinates of the node i. 

Similarly, the cubic Serendipity elements are 

i=l,4,9,12; 
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(a) L=8 (b) L=12 

Fig. 4.1 Nodes for Serendipity elements,^ ( j ^ ) , 
(a)quadratic,(b)cubic. 

n 1J 1P 9, 

^5 

(a) K=12 

Fig. 4.2 Nodes for Lagrange polynomials, , 
(a)quadratic, (b)cubic. 
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i=5,6,7,8; 

f7W=J (J+ i&XJ-rtO+VV;) , 
1=2,3,10,11 

The basis functions: 1 "^5^-(.xal, k=l,...,K, for the 
partial currents expansion on the coarse mesh boundary ^J^, 

is defined on each, side of the rectangle as Lagrange 
polynomials. The corners are not included in the defini­
tion because partial currents are defined according to 
the normal vector orientation, and the normal vector is 
not defined on the corners. 

Figure 4.2 illustrates the nodes on the boundary 
of a coarse mesh for quadratic and cubic Lagrange poly­
nomials. 

The quadratic Lagrange polynomials in the local 
coordinates system are 

where J"/ is. the abscissa of node i on the faces(. J^tjL), 

%l<nhJ-n-(jfnv,-) ,±=4,6,10,12, 
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where 4jj is the ordinate of node i on the faces {.+If ) 

• %h)=U-^) , t - s . i i , 

The cubic Lagrange polynomials are 

-%(j)-b(J+7If)(ir-0 , 1=1,4,9.12, 

~%(V -¡¿(1+ lrr,)(J -7Z) , 1=2,3, i o , u , 

%-ty-//jwJfo'-jJ , 1=5,8,13,16, 

tft>J'//jf?1V/Jfi-V'J ,1=6,7,14,15. 

The basis functions to be used in the generation of 

the response matrices were defined for coarse meshes -^2^ > 

n=l,...,N, in Chapter 3, as 

, i= 1, .. ., N e , r e J2m , 

and irj/f&) »i=1 »••• »̂ 5 J^^CC^^,where N £ and N g are the 

number of volume nodes and boundary nodes, respectively, of 

-Ao . The fm/te) and %m/(<Q basis functions are 

used for the neutron flux expansion and for the partial 

current expansions, respectively, in the assembly level 

calculation. 
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(b)nodes for ^ ; ( r g ) , i = 1 N g 

Fig. 4 . 3 Nodes for quadratic Serendipity elements, 
(r), and for piecewise polynomials, 
(rs)t in the coarse mesh -J2m 

ISmt — subdivided in 4 subdomains _r2 
m=l,...,4. 

rnim 
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To illustrate, Fig. 4.3 shows a coarse mesh 

divided in M subdomains, -¿2^^, , m=l,...,M, together with 

the volume nodes for quadratic Serendipity elements 

(flux expansion); and boundary nodes for quadratic Lagrange 

polynomials (current expansion). 

A 

The basis functions Y • (r) have the value unity 

at node i and the value zero at the remaining nodes, and 

^irt/ ^ s defined on the subdomains over which the common 

node i is defined. Within each, subdomain the basis func­

tion ^» (r) is a Serendipity polynomial as defined above. 

The basis functions )fsijj^rs) a r e e a c n defined on 

only one side of the coarse mesh, with the corners repre­

senting double nodes, one for each side. This- is consistent 

with the behavior of the partial currents at a corner, 

where a discontinuous change in the outward normal n(r s) 

occurs. For convenience H^^.^s) are defined as piece-

wise Lagrange polynomials. 

For illustrative purposes the response matrices 

defined in equation 13.31). were generated for a typical 
(47) 

light water reactor." using the basis functions defined 

above. Table 4.1 and Table 4.2 contain the response 

matrices iff^ and ¡7^ , respectively. Figure 4.4 

illustrates the outward partial currents due to a flat 

inward partial current incident on one face of the coarse 

mesh. Figure 4.5 shows the outward partial currents due 

to a constant neutron source within the coarse mesh. The 



Table 4.1 - for 2D-IAEA benohraark problero^ 4 7^(aone 1, 
group 1) in quadratic basis functions ~"GP~i(r„), 
k=.1,...,12. •** -2. 

J = 1 
U.3352E-02 
S.2577E-02 

-U.B625E-02 
-U.99«0E-02 

9.2669E-0U 
-6.5670E-03 
-8.0091E-05 

3.21U2E-03 
2.3023E-03 
K.8690E-02 
1.7200E-02 
3.6101E-01 

2 
1.0101E-01 
2.6163E-01 
1.0101E-01 
3.0302E-01 
5.9121E-02 
2.3907E-O2 
6.1030E-03 
1.B76VE-02 
6.1031E-03 
2.3907E-02 
5.9121E-02 
3.0302E-01 

3 
-1 .8625E-02 

5.2577E-02 
i» .3352E-02 
3.6101E-01 
1 .7200E-02 
« .8690E-02 
2.3023E-03 
3.2142E-03 

-8 .0087E-05 
-6.5670E-03 

9 .2669E-0U 
-H .99M0E-02 

4 
H.8690E-02 
1.7200E-02 
3.6101E-01 
1.3351E-02 
5.2576E-02 

-<J. 862I4E-02 
-H.99M0E-02 

9.2667E-01 
-6.b671E-03 
-C.0100E-05 

3.21U2E-03 
2,3023E-03 

5 
2.3907C-02 
5.9121E-02 
3.0302C-01 
1.0101E-01 
2.6il63r:-01 
i . o i o i n - o i 
3.0303E-01 
5.9122C-02 
2.3907E-02 
6.1031E-03 
1.8761E-02 
6.1030E-03 

6 
-6.5671E-03 

9.2671E-0H 
-4.9940E-02 
-M.062UE-02 

5.2577E-02 
M.3351E-02 
3.6101E-01 
1.7200E-02 
IJ.0690E-02 
2.3023E-03 
3.21M2E-03 

-8.000HE-05 

7 
8.0089E-05 
3.2112E-03 
2.3023E-03 
1I.86S0E-02 
1.7200E-02 
3.6101E-01 
1.3351E-02 
5.2577E-02 
1.662ME-02 
« . 9 9 « 0 E - 0 2 
9.2672E-04 
6.5671E-03 

8 
6.1029E-03 
1.876UE-02 
6.1030E-03 
2.3907E-02 
5.9122E-02 
3.0303E-01 
1.0101E-01 
2.6M63E-01 
1.0101E-01 
3.0303E-01 
5.9122E-02 
2.3907E-02 

9 
2.3022E-03 
3.21U2E-03 

-8.0073E-05 
-6 .5671E-03 

9 .2672E-0U 
-<l .99U0E-0 2 
- « .862HE-02 

5.2577E-02 
fl .3351E-02 
3.6101E-01 
1.7200E-02 
«1 .8690E-02 

10 
- a .99«0E-02 

9.2669E-0M 
-6.5670E-03 
-8.009'IE-05 

3.21«2E-03 
2.3023E-03 
1.8690E-02 
1.7200E-02 
3.6101E-01 
•J.3351E-02 
5.2576E-02 

-<l.862<tE-02 

11 
3.0302E-01 
5.9121C-02 
2.3907E-02 
6.1O30E-O3 
1.876qE-02 
6.1031C-03 
2.3907E-02 
5.9122E-02 
3.0303E-01 
1.0101E-01 
2.6163C-01 
1.0101E-01 

12 
3.6101E-01 
1.7200E-02 
M.8690E-02 
2.3023E-03 
3.21M2E-03 

-8.0092E-05 
-6.S671E-03 

9.2668E-0U 
-Q.99M0E-02 
-M.8S25E-02 

5.2U77E-02 
•1. 3351E-02 



Table 4 . 2 - for 2 D - I A E A benchmark problem^''^ (zone 1, 
group 1 ) In quadratic basis funotlons " J f j (r ), 
k = 1 , . . . , 1 2 , and (r),l= 1 , . . . , 8 . -5-

J - 1 2 3 4 
I=.1 6 . 3 U 0 9 E - 0 1 5 . 0 9 2 1 E - 0 1 - 2 .<»930E - 0 1 9 . 2 1 0 U E - 0 1 

2 - 2 . 9 M U U E - 0 1 2 . 2 U 0 8 E » 0 0 - 2 . 9 « H I E - 0 1 1 . 1 2 0 6 E « 0 0 
3 - 2 . M 9 3 6 E - 0 1 5 . 0 9 2 2 E - 0 1 6 . 3 4 0 9 E - 0 1 7 . 9 5 7 9 E - 0 2 
4 - 2 . 1 U 9 0 E - 0 1 9 . 2 1 0 H E - 0 1 6 . 3 U 0 9 E - 0 1 2 . 0 M 7 9 E - 0 1 
5 - a . 5 2 9 0 E - 0 1 1 . 1 2 0 6 E * 0 0 - 2 . 9 U U I J E - 0 1 7 . U H 0 3 E - 0 1 
6 - 9 . 3 1 6 0 E - 0 2 7 . 9 5 7 9 E - 0 2 - 2 . U 9 3 0 E - 0 1 2 . 0 U 7 9 E - 0 1 
7 - 9 . 3 1 5 6 E - 0 2 2 . 0 U 7 9 E - 0 1 - 2 . 1 M 9 0 E - 0 1 7 . 9 5 7 U E - 0 2 
8 - < J . 5 2 9 1 E - 0 1 7 . « < 1 0 3 E - 0 1 - U . S 2 9 1 E - 0 1 1 . 1 2 0 6 E + 0 0 
9 - 2 . 1«»99E- 0 1 2 . 0 1 7 9 E - 0 1 - 9 . 3 1 5 9 E - 0 2 9 . 2 1 0 5 E - 0 1 

10 - 2 . 4 9 3 8 E - 0 1 7 . 9 5 7 6 E - 0 2 - 9 . 3 1 6 0 E - 0 2 5 . 0 9 2 1 E - 0 1 
11 - 2 . 9UI4*JE- 0 1 1 . 1 2 0 6 E . 0 0 - a . 5 2 9 0 E - 0 1 2 . 2 « 8 0 E « 0 0 
12 6 . 3 U 1 0 E - 0 1 9 . 2 1 0 5 E - 0 1 - 2 . 1 U 9 9 E - 0 1 5 . 0 9 2 1 E - 0 1 

5 6 7 8 
7 .9575E-02 - 2 . 1 U 9 8 E -01 2 . 0U79F-01 - 9 . 3 1 b C E -02 
1.1206E<00 - U . 5 2 9 0 E -01 7 . ••U02F.-01 -M.5290E -01 
9 .2105E-01 - 9 . 3 1 6 0 E -02 2 . OU79E-01 -2 .1U99E -01 
5 .0921E-01 - 9 . 3 1 5 8 E -02 7. 9575E-02 - 2 . U 9 3 0 E -01 
2 .2U88E«00 - H . 5 2 9 0 E -01 1 . 1206E«00 -2 .9U1UE -01 
5 .0922E-01 - 2 . 1 U 9 9 E -01 9 . 2105E-O1 6.3109E -01 
9 .210HE-01 - 2 . U 9 3 8 E -01 5 . 0921E-01 G.3009E -01 
1 .1206E«00 -2.9<J4<»E -01 2 . 2U80E«00 -2 .9«<J«£ -01 
7 .9576E-02 6 .3U09E -01 5 . 0 9 2 2 E - 0 1 -2 .M93BE -01 
2 . 0 « 7 9 E - 0 l 6 .3109E -01 9 . 2101E-01 -2 .1U99E -01 
T . a a o s E - o i -2.9<4«ME -01 1.1206E+00 -M.5290E -01 
2 . 0 « 7 9 E - 0 1 - 2 . 4 9 3 8 E -01 7 . 9576E-02 - 9 . 3 1 5 9 E -02 
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f .05 

coarse raesh with 4 subdomains(2x2 ) 
coarse raesh with 16 subdomains(4x4) 

Pig. 4.4 Outward partial currents due to, the 
constant inward partial current on 

the bottom.(a)cubic elements,(b)quadratic 
elements, (arbitrary units) 
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coarse mesh with 4 subdomains(2x2) 
coarse mesh with 16 subdomains(4x4) 

Pig. 4.5 Outward partial currents(arbitrary 
units) due to the constant source 

within the coarse mesh.(both quadratic and 
cubic elements yield almost same results) 
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results using quadratic and cubic elements are almost 

coincident, because the outward partial current due to 

an isotropic uniform source is not expected to be a 

sensitive function of spatial position. 

The basis functions V̂ /Ĵ and ^^/fz) are chosen as 

quadratic elements, and the degree of approximation is 

varied by changing the number of subdomains in the 

coarse mesh _Q.m . 

4.2. Inner Iterations Scheme 

The one-group global response matrix - equations for the 

reactor problem were given by equations (2.16), (.2.17), 

and (2.18), which for convenience are rewritten below as 

J"-if* 7 +SC-S . C4.D 

(.4.2) 

§-M-I . (4.3) 

For a given source S, an iterative scheme used to 

determine either J~ or Jf is termed an inner iterations 

scheme. A convenient form for the inner iterations scheme 

is obtained by inserting equation (4.2) into (4.1), 

yielding 

^if.^-f-tf.i . (4.4, 
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(1-1,3) 

r ~ r ~ r 
t t r 

5 > * 
II (i,j+1) 

X 2 ^ y 

U 

t» f, t. 

Fig. 4.6 - Coarse mesh ordering and outward 
partial currents, represented "by 
arrows, fot quadratic elements. 
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In rectangular geometry it is convenient to change 

the subscripts of the coarse meshes _J2^ , n=l,...,N, 

to (i,j), i=l, • , i m a x 7 J =1, • • •, Jju a x, s u c h that a coarse 

mesh _/2.(i/j). and its neighbors (i+li j +1) can be 

ordered as illustrated in Figure 4.6. 

With this transformation the permutation matrix jf/ 

can be represented by the. following algorithm. 

(4.5) 

; i = l , . . . , l m a x ; j = l , . . . , j m a x , 

where = ^ " V 9 

0 0 •p 0 ' 0 0 0 0' 

0 0 0. a 0 0 0 p 

% = 0 0 Q 0 0 0 0 0 

0 0. 0 0 0 0 0 0 

0 0 Q 0 ' 0 0 0 0 " 

0 0 0. 0. 0 0 0 0 

I3 = 
p 0 0 0 0 0 0 0 

r 

0 0. 0. 0 0 p 
C9 

0 0 
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0 0 1 
0 1 0 
1 0 0 

and for boundary coarse mesh X2(i,j) the boundary con-

for quadratic elements. 

ditions are explicitly included in the calculational scheme 

by assessing values for some of the elements of the inward 

partial current J~Ci,jl (.e.g., J^(i,j)=0for vacuum boundary 

conditions,where k. is a. node on the boundary of the 

reactor). 

The inner iterations scheme represented'by the 

equation (4.4). can be given by the algorithm 

(.4.6) 

2 J = 1 ' ' ' m ' V x ' ' j = 1 ' *'' ' jmax* 

Explicit representation of the Jacobi matrix equation 

¡2) 

is shown in Figure 4.7. From the graph theory , the 

matrix can be seen to be a consistently ordered 2-cyclic 

block-Jacobi matrix; hence Gauss-Seidel iteration 
(2) 

will converge twice as fast as block-Jacobi Iteration. 

Therefore the iterative scheme adopted in the present 

investigation is the Gauss-Seidel method which may be 

represented by the following algorithm 



\ 

0 fa, J) 
f - ' 

i 

Q. ' • &(>••;•/) 

* • * . • * * 

Z'f'V'i) 

4 

— + 

. . . . • • • * • » • 
0 
m 

.<[%J,j) 
0 

* 
• 

* 

9 

• 

•J- 0 
* \ * 

Fig. 4.7 - Block-Jacobi matrix equation. 
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(4.7) 

where it is assumed that the progression through the mesh 
is to the right and down ('.see Fig. 4.6). Other progres­
sions are readily treated. 

4.3. Outer Iterations and Acceleration Schemes 
The specific application of the finite element 

response matrix method is the solution of the two-group 
diffusion equation, assuming a fission source only in 
group 1, 

where ^L(r). is the down-scattering cross section, 
<^(r) is the fission cross section for group g, 

is the number of neutrons generated per 
fission event m group g, i 



70 

and k,is the eigenvalue to be determined. 

The formulation of the response matrix method 

used in the present investigation is based on the assump­

tion that the source, term comprises all types of neutron 

sources. Therefore the response matrices are generated by 

considering 

as the source for group 2, such. tha,t the coupled equa­

tion (4.8) can be considered as being composed of"two 

fixed source problems connected to each other by source 

terms. • 

The solution for a fixed source problem has already 

been obtained in equation (.4.7), where the outward partial 
+ 

currents £ due to a specified source distrxbutxon S are 

obtained with, inner iterations. The neutron flux is 

obtained by the equation .(2.18) as 

where dp is the expansion coefficients for the global 

flux ^ Cr).. 
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The eigenvalue problem (4.8) can then be solved by the 
(2-4) 

power method * with an iterative scheme known as outer 

iterations or source iterations , which is given by 

the algorithm (the outer iteration) 

Step 1 -Guess %>, , *±? (~J a n d 'r a n d compute 

Step 2 - Solve the fixed source problem for group 1, 

(the inner iteration) 

Step 3 - Calculate the source for group 2, 

Step 4 - Solve the fixed source problem for group 2, 

(inner iterations). 

—-
*Lfc- "SB r 
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Step 5 - Estimate the new eigenvalue, 

11^;^%^)$*%)]^ 
Step 6 - Estimate the new source for group 1, 

and iterate, t=l,2,3,..., from step 1 through step 6 until 

required convergence criteria. 

The matrix representation of the algorithm is 

presented in Appendix I. 

In order to accelerate the convergence rate of outer 

iterations two acceleration schemes were considered: the 
(51) 

asymptotic source extrapolation method ' and the 
(52 53) 

Chebyshev polynomial method. ' Both methods are 
described in Appendix I. To test the relative merits of 

these methods, a two-dimensional 2D—IAEA benchmark 
(47) 

problem 'was solved applying the acceleration schemes 

to the finite element response matrix method. 

Plotted in Figure 4.8 are the results obtained with 

the asymptotic source extrapolation method along with the 

results obtained without accelerating the outer itera­

tions. The number of outer iterations is decreased, but 

and k (t) satisfy the 



73 

ConTerjance 
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?lux 

is ye io 4? 7a So Jao si0 JSO /-,•> 

4.9 - Acceleration of outer iterations with 
Ohaoyane? polynomial hathod. 
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the number of inner iterations per outer iteration in-

creases due to the extra inner iterations needed in order 

to reach the asymptotic convergence behavior, and the total 

computational time is increased. 

A similar comparison of the Chebyshev polynomial 

method results with the results obtained without accelera­

tion is shown in Figure 4.9. In this case the number of 

outer iterations in the accelerated calculations is 

decreased without the increase in the number of inner 

iterations per outer iteration observed with the asymp­

totic source extrapolation method. The net result is that 

the overall computational time is effectively shortened 

by about a factor of 2. 

Therefore, the Chebyshev polynomial method was 

chosen to accelerate the outer iterations in the finite 

element response matrix method. 



CHAPTER 5 

EVALUATION OF THE FINITE ELEMENT RESPONSE MATRIX METHOD 

The evaluation of the finite element response matrix 

method was performed by application to two types of reactor 

problems: a fixed source problem and two eigenvalue 

problems 

The fixed source problem consists of an idealized bare 

homogeneous core, and the eigenvalue problems are two 

benchmark problems that have been used for testing various 

coarse mesh methods. 

The computations were performed with the Amdahl-470/V8 

computer at the Computing Center at The University of 

Michigan. 

5.1 Fixed Source Program 

The simplified reactor used for the fixed source 

calculations is a 200cm x 200cm bare uniform core composed 

of materials typical of a light water reactor.^ 5^ A 

constant neutron source was imposed and only one energy 

group was utilized. (The one-group constants are shown 

in Appendix IV). 

It is recognized that a bare uniform reactor is only 

of academic interest and should not be used in a test of 

76 
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a coarse mesh method; however^ the main objective of this 
effort is to investigate the effects of varying several of 
the computational parameters,such as the convergence cri­
teria for the inner iterations, the maximum number of inner 
iterations, the degree of polynomial approximations for the 
partial currents, and the number of subdomains in a coarse 
mesh. Experience gained from these parameter variations 
may then be utilized in the more practical benchmark pro­
blem calculations. The exact analytical solution for the 
bare uniform reactor obtained by Fourier series expansion 
is taken as the reference solution for the comparison of 
the results. 

The partial currents in the reactor (.global) calcu­
lation were approximated by quadratic and cubic polynomials 
and the basis functions used to generate the response 
matrices in the assembly (.local) calculations for the 
coarse meshes are chosen to be quadratic polynomials. 
Various degrees of approximations are obtained by varying 
the number of subdomains. in a coarse mesh. Two coarse 
mesh dimensions were considered, 20cm x 20cm and 10cm x10cm, 
and summaries of the calculations are succintly presented 
in Table 5.1 and Table 5.2, respectively. 

The neutron flux distribution, illustrated in 
Figure 5.1, displays a.noticeable discontinuity at x=80cm, 
although in the rest of the core the neutron flux calcu­
lated by the present method agrees very well with the 
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T a b l e 5 . 1 - 3 a r e h o m o g e n e o u s c o r e c a l c u l a t i o n ^ f i x e d s o u r c e 
p r o b l e m ) w i t h 20crax20c: i i c o a r s e m e s h e s . 

<p " = n e u t r o n f l u x a t X = 3 0 c a i n t h e r i g h t c o a r s e m e s h . 

^ ' • n e u t r o n f l u x a t X=30cm i n t h e l e f t c o a r s e m e s h . 
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Tab le 5.2 - Bare homogeneous core c a l c u l a t i o n ! f i x e d sou rce 
problem) wi th 10craxlOcm c o a r s e meshes.-
<P~ =neutron f l u x a t X=80cm in the r i g h t c o a r s e n e s h . 
^ = n e u t r o n f l u x a t X=80cn i n the l e f t c o a r s e mesh. 

to o C P U ( s e c ) 

<a c 
•w c 
O -H 

09 

c 
o o 

•H 
= 0 Y = X 

p
a

rt
i 

cu
rr

e 

nu
m

be
r 

in
n

er
 

it
é

râ
t 

in
n

er
 

it
é

râ
t 

to
ta

l 
<f <P~ 

O .05 1 x 1 5 . 1 4 9 .259 .936 .935 1 . 001 .878 .876 1 . 0 Q 2 

tA
TI

 

.05 2x2 4 .120 .284 .942 .940 1 . 0 0 2 .883 .882 1.001 
% a •< .05 3x3 4 .121 ,434 .940 .939 1 . 001 .880 .879 1.001 
cr .05 4x4 4 .120 .775 .939 .939 1 . 0 0 0 .878 .878 1 .000 

.05 1 x 1 5 .249 .412 .936 .935 1 . 001 .878 .876 1.002 

.05 2x2 4 .204 .461 .941 . 9 4 1 1.000 .882 .884 .998 

CU
Bl

 

.05 3x3 4 .205 .667 .939 .940 .999 .879 .881 .998 

CU
Bl

 

.05 4x4 4 .204 1 .1 2 7 .938 .940 .998 .879 .881 .998 

o 
.01 1 x 1 8 .233 .341 . 9 1 6 . .914 1 . 0 0 2 .847 .843 V.005. 

:A
T

I 

.01 2x2 7 ".204 .367 . 9 1 5 . 9 1 3 1 . 0 0 2 .841 .838 1.004 
« 
«< .01 3x3 7 .204 . 5 1 2 . 9 1 3 . 9 1 1 1 . 0 0 2 .839 .836 1.004 
cr .01 4x4 7 .204 .860 . 9 1 2 .911 1 . 001 .838 .835 1 . 0 0 4 

.01 1x1 8 .368 .552 .916 .914 1.002 .847 .843 1.005 

C3 
M 

.01 2x2 7 .341 .599 .914 • 9 H 1 . 0 0 0 .840 .841 .999 
03 
O 

.01 3x3 7 .343 . 8 1 3 .912 . 9 1 3 .999 .838 .839 .999 

.01 4x4 7 .343 1 . 2 6 4 . 9 1 2 . 9 1 2 1 . 0 0 0 .837 .838 .999 

.001 1 x 1 14 .401 .509 .906 .904 1 . 0 0 2 .834 .830 1.005 

A
T

I*
 

.001 2x2 1 3 .373 .537 .902 .899 1 . 0 0 3 .825 .820 1 . 0 0 6 

IA
D

R
 

.001 3x3 1 3 .373 .'686 .901 .898 1 . 0 0 2 .824 .819 1.006 
CT .001 4x4 13 .373 1 . 0 3 7 .901 .898 1 . 0 0 2 .823 .819 1 . 0 0 5 

.001 1x1 H .669 • 835 .906 • 904 1 .002 .834 .830 1 . 0 0 5 

O .001 2x2 1 3 .622- .881 . 9 0 1 .901 1 . 0 0 0 .824 .823 1 . 001 

CU
B 

.001 3x3 1 3 .622 1 . 0 9 5 .900 .900 1 . 0 0 0 .823 .822 1 . 001 

. 0 0 1 4x4 13 .622 1 .545 .900 .900 1 . 0 0 0 .822 .822 1 .000 

A n a l y t i c a l S o l u t i o n .9004 .9004 .8217 .8217 
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A 

X(cm) 

Fig. 5.1 - Heutron flux distribution in a bare 
homogeneous core calculated with quad­
ratic partial currents.(20cmx20cm coarse 
mesh, £-.= .01,3x3 subdomaina). 
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analytic solutions. One of the factors contributing to 

this discontinuity is the assumption of the response matrix 

method itself, which is based on the continuity of the 

partial currents across the coarse meshes but not on the 

continuity of the neutron fluxes. 

When cubic polynomials are used for the partial 

currents the discontinuity is less pronounced than that 

with quadratic polynomials, and for both approximations the 

discontinuity decreases by increasing the number of sub-= 

domains in the coarse mesh. From the results observed in 

Table 5.1 and Table 5.2 the division of the coarse mesh in 

9 subdomains (3x3). can be considered sufficiently fine 

since it yields results almost coincident to the results 

obtained with division in 16 subdomains (.4x4) . 

The convergence criterion for the partial currents, 

<£j- = .01 t yields results comparable to the results 

obtained with. ¿ V - .001 , such that after approximately 

6 inner iterations the results are almost converged to the 

results obtained with 10. inner iterations, in the calcu­

lations with 20cm x 20cm coarse meshes. 

From the above results, the inner iterations para­

meters to be used in the eigenvalue problems (with outer 

and inner iterations), can be estimated as: 

a) the initial (jfirst outer iteration), limit for the 

number of inner iterations should be approxi­

mately 5, 
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b) the initial (first outer iterations) limit for the 

convergence criterion for partial currents should 

be approximately = .01, 

c) at least two inner iterations (in opposite 

sweeping directions) should be performed for each 

outer iteration , 

d) the number of subdomains for each coarse mesh 

should be about 9. (.3x3) . 

5.2 Eigenvalue Problem 

The evaluation of the finite element response matrix 

method for more realistic configurations was performed by 

applying the method to two benchmark"problems : the 2D-IAEA 

benchmark p r o b l e m ^ ^ and a Biblis benchmark problem. 

5.2.1 2D-IAEA Benchmark. Calculation 
(47) 

The 2D-IAEA benchmark problem is an idealized 

pressurized water reactor CPWR) problem with zone loading 

and a pure water reflector as illustrated in Figure 5.2 

(diffusion parameters and cross sections are shown in 

Appendix IV). This problem was defined by participants of 
(57) 

the 1971 IAEA panel on burn-up physics^ ' and the objec­

tive was to provide a convenient common basis for verifying 

new methods and for comparing the relative merits of 

various calculational methods of solution. 
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External boundaries: zero incident current 
Symmetry boundaries : zero net current 

Fig. 5.2 - 2D-IAEA benchmark problem. (47) 



84 

Reference solutions obtained with a fine mesh 
(58) 

VENTURE calculation, which is a mesh-centered finite 

difference code, and a fine mesh P D Q - 7 ^ calculation, 

which is a mesh-cornered finite difference code, agree to 
(18) 

within only 2% in assembly-averaged power distribution , 

as illustrated in Figure 5.3. For the evaluation of the 

present method, however, the VENTURE solution is chosen 

as reference solution. One reason is that several VENTURE 

calculations.were made and the reference solution was ob­

tained by the Richardson extrapolation method and secondly 

because the mesh-centered scheme is considered by some 

investigators to be slightly more accurate than the 
(18) 

mesh-cornered schemes. v The computational time for the 

VENTURE calculations is presented in Table 5.3. Table 5.3 Computational time required for 
VENTURE c a l c u l a t i o n ( w i t h 
IBM 360/91) for different mesh 
sizes. UP/P is the relative devia­
tion of assembly averaged power 
distribution.) 

! Mesh width (cm) ef f maximum 
UP/PI (%) 

CPU (sec) 

5 

* 2.5 • 

^ 1.25 
v 2/3 

extrapolated 

1.02924 
o oo zo 

1.02944 
0 00 X & 

1.02954 
,000 0*1 

1.02958 

1.02960 

13.9 

5.2 

2.0 

0.32 

ref. solution 

19 

204 

930 

4800 
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2D IAEA Benchmark Problem 
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The results of the finite element response matrix 

method is presented below and for the rest of the presenta­

tion an abbreviated expression is used to describe the cal-

culational approximation adopted for each computation. 

The notation "9/4 quadratic calculation" refers to quadratic 

approximations for the global flux and partial currents, 

performed with, 4 coarse meshes per fuel assembly (2x2), 

using response matrices generated (in the local calcula­

tion) with 9 subclomains (.3x3) for each coarse mesh. 

Table 5.4 presents the computational time required to 

generate the response matrix for one unique assembly and it 

can be noted that the processing time required for quadratic 

arid cubic calculations is of the same order. 

Table 5.4 Computational time required for response 
matrix generation. 

current and flux 
approximation 
(global calculation) 

number of 
subdomains CPU (sec) 

4 S' ^ 
. 9 m ^ 

.032 

quadratic 

4 S' ^ 
. 9 m ^ .118 

.356 

4 .046 

cubic 9 .147 

16 .411 

\~', y / Jem <v* 
O cX)0\ U /Y\JsiW 

i i ' * 
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The convergence of the calculational scheme is 

measured by comparing the nodal values of the neutron 

fluxes in two successive outer iterations, and from the 

results shown in Table 5.5 one can expect that the conver 

gence limit, , of about 10~ 5 yields sufficiently 

converged results. As noted above, the convergence cri­

terion for the partial currents in the global calculation 

was fixed at £j~ = .01. 

Table 5.5 Effect of convergence criterion 

Calculation no. of outer 
iterations 

CPU(sec) keff maximum 
lAP/Pl (%) 

34 19" -3 10 .5 1 .0297 -3 .54 

16/1 cubic 59 10" -4 14 3 1. 0298 1 .39 

83 10" -5 18. 0 1 0298 1 .16 
-3 23 10" 3 .5 1 0292 2 .26 

4/1 quadratic 51 10" -4 5 .9 1 .0293 4 04 

64 10* -5 7 1 1 .0293 4 .25 

The summary of the 2D-IAEA benchmark calculations 

with the finite element response matrix method is pre­

sented in Table 5.6. One can conclude that with an 

increase inthe number of subdomains for response matrix 

generation the solution converges faster and the results 
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Table 5.6 - Summary of 2D-IA3A benchmark calculations. 
(Benchmark k e f f=1.02960) 

Calculation No. of 
outer 
iterations £+• 

CPU 
(sec) keff 

maximum 
MPI/P(£) 

4/1 quadratic 64 1.xl0"5 7.1 1.0293 4.25 
51 1.x10-4 5.9 1.0293 4.04 

9/1 quadratic 66 1 ,x10-5 8.2 1.0296 1 .76 
50 1.x10"4 6.6 1.0296 1 .52 

16/1 quadratic '66 1,x10~5 10.2 1.0296 .83 
42 1.X10-4 7.9 1.0296 .54 

9/4 quadratic 150 3.X10-5 47.4 1.0295 1.41 
106 l.xlO-* 34.8 1.0294 1.18 

16/4 quadratic 150 2 . X 1 0 - 5 49.8 1.0294 .77 
90 1.x10~4 32.4 1.0293 .26 

4/1 cubic 91 1.x-10-5' 16.3 1.0298 2.04 
72 1 .xlO-4- 13.1 1.0298 1 .83 

9/1 cubic 99 1..X10-5 18.3 1.0299 1.35 
64 1.x10~4 12.8 1.0299 1.47 

16/1 cubic 83 1,x10-5 18.0 1.0298 1.16 
. 59 . 1 .x10-4 H.3 1.0298 1 .39 

9/4 cubic 149 1,x10-5 82.9 1.0295 .64 
93 1.X10-4 54.3 1.0295 .65 

16/4 cubic 150 1 .3x10~ 5 86.4 1.0294 .26 

85 1 .xlO-4- 53.9 1.0294 .63 
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are improved. Better results are also obtained by 
increasing the number of coarse meshes per fuel assembly 
but with the penalty of increased computational time due to 
the slower convergence. The decrease in convergence rate 
with small mesh size is due to the fact that the spectral 
norm of the ••response matrix method increases with 
decreasing Size of the coarse mesh (Appendix III). Examples 
of the assembly averaged power distribution are presented 
in Figure 5.4 and Figure 5.5, for 9/1 quadratic calculation 
and 9/1 cubic calculation, respectively. 

The thermal neutron flux distribution in the core 
is illustrated in Figure 5.6 through Figure 5.9 for quadra­
tic and cubic calculations, and compared with the detailed 

(47)-
solution obtained with FEMB ' (second order Lagrange 
polynomials in rectangular elements). The results of the 
quadratic calculation (Figure 5.6) indicate noticeable 
disagreement in the core-reflector region, due to the 
poor interpolation properties of the quadratic polynomials 
in large (20cmx20cm) coarse meshes. The cubic calcula­
tion (Figure 5.7) with identical coarse meshes indicates 
better agreement in the neutron flux distribution in the 
neighborhood of the reflector. The results of smaller 
coarse meshes (lOcmxlOcm) are in much better agreement 
with the detailed FEMB solutions, and for these smaller 
coarse meshes, the cubic calculation (Figure 5.9) results 
in better agreement than the quadratic calculation 
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2D IAEA Benchmark Problem 
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2D IA2A Benchmark Problem 
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Fig. 5.5 - 2 D - I A E A assembly averaged power distribution 

obtained with 9/1 cubic calculation(£,*=10~5). 
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?lux(arbitrary units) 

Fig. 5.6 - 2D-IAEA thermal neutron flux distribution obtained 
with 1 6 / 1 quadratic calculation £4> = 1 0 ~ 5 ) . 
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Fig. 5.7 - 2D-IA£A thernal neutron flux distribution obtained 
with 16/1 cubic calculation =10""'). 
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?i£. 5.8 - 2D-IA2A. thermal neutron flux distribution obtained 
with 16/4 quadratic calculations S<$> = 2 .x10~5). 
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Flux(arbitrary units) 
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Fig. 5 . 9 - 2D-IA2A thermal neutron flux distribution obtained 
with 16/4 cubic calculation £<p =1. 3 x 1 0 ~ ^ ), 
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(Figure 5.8). 

Except for the 4/1 quadratic calculation, the results 

shown in Table 5.6 are well within the accuracy expected 

from a coarse mesh, method. To illustrate. Table 5.7 

contains results obtained with several well-known efficient 

coarse mesh methods, some of which are routinely used for 

production level calculations. 

The results of 9/1 and 16/1 calculations for both 

quadratic and cubic approximations shown in Table 5.6 are 

relatively accurate .and at the same time economical in 

view of the results shown in Table 5.7, taking into account 

the size of the coarse meshes (20cmx20cm). Moreover, the -

fact that the spatial neutron flux distribution is avail­

able throughout the core for the finite element response 

matrix method, compensates for some extent the slight 

disadvantage in computation time. However, the extensive 

and expensive optimization of various internal parameters 

and detailed investigation of the acceleration (outer 

iterations) methods more suitable for the present calcu-

lational method should be considered before production 

level status is achieved. 

5.2.2 Biblis Benchmark. Calculation 

The Biblis benchmark p r o b l e m i s an idealized 

PWR with checkerboard loading and reflected by water as 

illustrated in Figure 5.10 (diffusion parameters and cross 



Table 5.7 2D-IAEA benchmark problem solved by 
coarse mesh methods. (17'-1-8'2C)'47^ 

coarse mesh 
method ef f maximum 

fc»P//P(%) 
coarse mesh 

size order 
C P U ( b ) 

(sec) 
no. of 
outer 
iterations 

NEM(MEDIUM-2 
program(I 7)) 1.0296 .05 3 1/3 cm 4 1 5 . 1 ( C ) 42 

1.0298 1.67 10 cm 4 4.17 26 

1.0300 3.67 20 cm 4 1.77 35 

N G F M ( 2 0 ) 1.0296 .71 20 cm 2 1.8< C ) -
FEM(FEM2D 

program^ ') . 1.0297 1.87 606 nodes 2 35.8 76 

1.0302 14 .87 
T 

182 n o d e s ( a ) 2 6.8 40 

(a) average of 2 triangular coarse meshes per assembly. 
(b) CDC 6600 computer. 
(c) CYBER 175 computer. 
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sections are given in Appendix IV) . This problem is 

highly nonseparable (x-y separability) and thus represents 
(56) 

a severe challenge to the coarse mesh methods. Although 

there is no accurate fine mesh finite difference results 

available, two of the coarse mesh methods, NEM and NGPM, 
(56) 

have produced results which agree to within 0.15% in 

assembly averaged power distribution as shown in Table 5.8. 

Therefore,the reference solution adopted for the evaluation 

of present investigation Is the NEM solution obtained with 

5.781cm x 5.781cm coarse meshes. 
Table 5.8 Biblis benchmark problem solved by 

coarse mesh methods.d9'20,56) 

coarse mesh 
method 

keff maximum 
16P\/P(%) 

coarse mesh 
size order 

NEM 1.02511 ref» solution 5.781 cm 3 

1.0251 1.6 23.1226 cm 3 

NGFM 1.0251 .15 3.854 cm 2 

1.0252 i-7 23.1226 cm 2 

From the summary of Biblis benchmark calculations 

presented in Table 5.9, one concludes that the 11.561cm x 

11.561cm coarse mesh calculations, i.e., the 16/4 quadratic 

and 16/4 cubic calculations, yield essentially the same 

results as the 5.781cm x 5.781cm NEM coarse mesh calcula-
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Table 5.9 Summary of.Biblis benchmark calculations. 

calculation no. of 
outer 
iterations 

CPU 
(sec) • keff maximum 

|AP//P(%) 

9/1 quadratic 73 -4 
1x10 9.9 1.0255 2.79 

99 lxlO"5 12.5 1.0255 2.51 
16/1 quadratic 66 lxia"4 13.6 1.0253 1.72 

99 3xl0~5 16.7 1.0253 1.17 
16/4 qudratic 1Ü1 -4 

1x10 41.5 1.0250 .90 
150. 3xl0 - 5 55.6 1.0250 .20 

9/1 cubic . 52 -4 
1x10 13.9 1.0255 3.67 

99 1x10"5 21.8 1.0255 2.96 
16/1 cubic 54 -4 

1x10 • 19.9 1.0254 -2.11 
99 2xl0"5 26.9 1.0254 1.55 

16/4 cubic 102 -4 
1x10 70.5 1.0250 .87 

150 2xl0~5 96.8 1.0250 .23 

tion. Figures 5.11 and 5.12 illustrate this in more 
detail by comparing "the assembly averaged power distribu­
tion for the reference solution (NEM), the nodal Green's 
function method (NGFM) solution, and 16/4 quadratic and 
16/4 cubic calculations, respectively. Computation times 
for the finite element response matrix solution are given 
in Table 5.9; however, computation times for the NEM and 
NGFM solution are not available. 
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=3.x10~5) 
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Fig. 5 . 1 4 -Biblis assembly averaged power distribution 
obtained with 16/1 cubic calculation. 
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AFlux(arbitrary units) 

X{units of 
23.1226 ca) 
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X(units of 
Pig. 5 .15 - 3iblis thermal neutron distribution obtained 23.1226cm) 

with 16/4 cubic calculation £<p =2.x10"5). 
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It is also noted that 16/1 quadratic and 16/1 cubic 
calculations yielded results acceptable (within 2% for 
assembly averaged power levels) for coarse mesh methods 
but with a significant improvement in computational time 
compared with the 16/4 quadratic and cubic calculations. 
Figures 5.13 and 5.14 present the results utilizing the 
16/1 quadratic and 16/1 cubic approximations, respec­
tively. 

The small relative increase in computational time 
when compared with. 2D-IAEA benchmark calculation is 
primarily due to two causes-: the increase in the number 
different loading zones thus requiring generation of a 
greater, number of response matrices and the slower 
convergence of the outer iterations caused by the 
highly nonseparable neutron' flux distribution, which is 
illustrated in Figure 5.15. 



CHAPTER 6 
CONCLUDING REMARKS 

6.1 Summary of Investigation 
The present investigation examined an alternative 

formulation of the response matrix method implemented 
with the finite element method for application to coarse 
mesh reactor analysis. 

The finite element method was applied in a two level 
scheme. The first level, the local (or assembly-level) 
calculation, utilized quadratic Serendipity elements to 
solve the weak form of the inhomogeneous diffusion equa­
tion subject to incoming partial current boundary condi­
tions. The results of the local calculations are then used 
to generate the. response matrices. The unique feature 
of the response matrix formulation is the use of two types 
of response matrices - one giving the response in the 
outgoing partial current on the boundary due to incoming 
neutrons which diffuse to the boundary (without absorption 
or outscatter) and the second type giving the response in 
the outgoing partial current due to a source within the 
node (inscatter or fission or external source). Conven­
tional response matrix methods only utilize the former 
type of response matrix, which is then generalized to 

107 
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include the response in the outgoing current due to the 
incoming neutrons which eventually reach the boundary. The 
second level of the finite element application is then to 
utilize the response matrices from the local calculation 
to solve for the global fluxes and currents. The global 
fluxes and currents, are themselves expanded in either 
quadratic or cubic Serendipity elements (a user option), 

•which are independent of the finite element basis functions 
used for the expansion of the local fluxes and currents.. 
The unknown expansion coefficients for the global fluxes 
and currents are then solved for utilizing a Gauss-Seidel 
iterative method to sweep through the global mesh, until 
the partial currents and fluxes converge. 

This alternative formulation of the response matrix 
method (two types of response matrices) has the advantage 
that it decouples the response matrix generation from the 
internal neutron multiplication factor, k eff, since the 
response matrices, are not a function of k e f£ as in the 
conventional response matrix formulation. Thus the expen­
sive regeneration of response matrices during the global 
solution is avoided, which is a significant advantage. 
Secondly, the multigroup diffusion equation can be readily 
solved by standard source iteration methods(outer itera­
tions) . Finally, acceleration of the outer iterations 
convergence rate was obtained by using the Chebyshev poly­
nomial method. 
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6.2 Conclusions 
Based on the preceding discussion of the investiga­

tion into the finite element response matrix method for 
coarse mesh reactor analysis, the following conclusions 
are made: 

1. The method was. applied to the idealized zone 
loading PWR problem, the 2D-IAEA test problem, with excel­
lent results. The error in the assembly averaged power 
distribution is within the error observed with fine mesh 
(about 1 cm), finite difference calculations (VENTURE and 
PDQr7) when compared with the reference extrapolated 
results. The savings in the computational time, therefore, 
are substantial given the comparable accuracy and the 
significant increase in the amount of information available, 
e.g., the detailed spatial neutron flux distribution. The 
disagreements in the neutron multiplication factor, keff» 
are slight and well within the accuracy "expected from 
coarse mesh methods. 

2. An accurate comparison in the computational effi­
ciency of the present method with..some of the highly effi­
cient production level coarse mesh codes, e.g., NEM and 
NGFM, is not possbile due to the difficulty in comparing 
relative efficiencies of different computers used with the 
various methods. However it would appear, using the 
information a v a i l a b l e ' c o n c e r n i n g relative speeds 
for the various computers, that NEM and NGFM programs are 
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somewhat more efficient than the finite element response 

matrix method at the present stage. However, the fact that 

additional information is available with the finite element 

response matrix method, in particular the detailed neutron 

flux/power distribution, represents significant advantage 

for the present method. In addition, the unquestionable 

potential to incorporate additional capabilities such as 

treatment of spatially dependent cross sections, triangular 

geometry, and highly heterogeneous fuel assemblies, aPso 

compensate to some extent the relative increase in the 

computational time when compared with NEM and NGFM. 

3. The successful application of the finite element 

response matrix method to the highly nonseparable problem, 

the Biblis PWR with checkerboard loading, has shown the 

capabilities of the present calculational method to solve 

practical problems with realistic loading configurations. 

In particular, the assembly averaged power distribution 

calculated with a relatively coarse mesh yielded 

essentially the same results as somewhat finer meshes 

for the NEM and NGFM methods. 

4. Concerning the accuracy and efficiency of the 

finite element response matrix method as a function of 

polynomial order and mesh, spacing, comparable results are 

obtained for the test problems with 9/1 quadratic or 9/1 

cubic calculations, with the cubic elements yielding more 

accurate results than quadratic elements at the cost of a 
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slight increase in computationalttime. The subdivision of 

the coarse mesh, (.assembly), into 9 subdomains to generate 

.the response matrix is sufficiently accurate compared with 

the results with 16 subdivisions, and for smaller coarse 

mesh size (e.g., 9/4 calculation) the results are better 

but the convergence rate for the outer iterations decreases 

substantially due to the larger spectral norm of the itera­

tion matrix for smaller mesh sizes, with consequent increase 

in computational time (.about factor of 4). 

5. The alternative formulation of the response matrix 

method, utilizing two types of respcnse matrices, avoids 

the expense of recalculating the response matrices (or 

parameterizing them), as a function of k e f f This is 

especially significant in fuel management analyses where 

all of the fuel assemblies (or even portions of them) will 

have different burnups, hence different response matrices. 

6. The present method is readily generalized to 

treat heterogeneous assemblies (e.g., waterholes or poison 

pins) or depletion induced spatial variations in the nodal 

cross sections. This is due to the fact that the use of 

the finite element method for the generation of the 

response matrices is not restricted to a homogeneous 

domain, although the current code does have this restric­

tion. Thus the method is capable of generating detailed 

within-node neutron flux/power distributions in a hetero­

geneous assembly with little increase in computational 

time. 
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6.3 Recommendations for Further Study-

Since the capabilities of the finite element response 

matrix method have been demonstrated in .realistic reactor 

calculations, future effort should be expended to extend 

the calculational model and optimize the computational 

efficiency of the code. In particular, further study 

should be directed at the following: 

1. The convergence of the outer iterations should be 

improved developing a more effective acceleration scheme^ 

than the Chehyshev polynomial method used presently. For 

example, an examination of the theoretical foundations 
(54) 

for the coarse mesh, rebalance acceleration method with 

respect to the finite element response matrix method 

could be undertaken in order to develop an equivalent 

acceleration scheme to improve the convergence of the outer 

iterations. 

2. Extend the present method to take into account 

the effect of depletion induced spatial cross sections 
(23) 

variations, as suggested by Kavenoky and Lautard for 

the finite element method. 

3. Provide a feedback calculational capability by 

treating separately small regions of the core (coarse mesh) 

and regenerating the response matrix only for these 

regions. Also a scheme which would allow inexpensive 

regeneration of the response matrix should be investigated 

to allow inclusion of a small spatially dependent 

perturbation into the inhomogeneous term( source term). 
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4. Generalize the response matrix generation to 
heterogeneous assemblies which would allow the treatment 
of local heterogeneities and would result in the calcula­
tion of local pin power peaking within the coarse mesh 
node. 

5. The use of a triangular mesh (with the associated 
finite element), should be developed in order to extend the 
calculational capability to hexagonal fuel assemblies of 
fast reactors. 

6. Improve the computational efficiency by opti­
mizing the computational algorithm and the programming. 
For instance, higher order finite element approximations, 
e.g., cubic or quartic, should be investigated for the 
local calculation ^generation of the response matrices) 
in order to improve the accuracy of the global calcula­
tions without excessive increase in the computational 
time. 
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APPENDIX I 

ACCELERATION SCHEMES 

The outer iterations convergence of the finite 

element response matrix method was accelerated by two 

acceleration schemes: asymptotic source acceleration 

method and Chebyshev polynomial method. 

In order to apply the asymptotic source acceleration 

method and the Chebyshev polynomial method to the response 

matrix method, the solutions given in the equations (2.20) 

and (2.21) is rewritten for a fixed source problem as 

(for group g) 

where 

Therefore the problem (4.8) can be given as 

(1.1) 
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where 

Jf^ f 0~Jt2y i-s (LxN)x(LxN) diagonal with 

elements #3 2.jf , i=l,. .. , (LxN) , 

~7l^j is. (LxN) x (LxN) diagonal matrix 

with elements • , i=l,•..,(LxN), 

and Cri and (.r) were expanded in the same 

basis functions as *p\x) , with -^^/y and ^Zl£ as 

expansion coefficients, respectively. 

Defining 

(1.2) 

the equations (.1.1) yield 

1 y 

(1.3) 

and introducing the equation (.1.3) into the equation (1.2) , 

one gets 
/ 
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where 

Now the outer iterations can be given by the power method 
(source iteration method) as 

Asymptotic Source Extrapolation 
(51\ 

The asymptotic source extrapolation method . 
assumes that some previous outer iterations are performed 
such that Y } ^ has reached asymptotic convergence 
behavior where higher eigenmodes are sufficiently dampened 
and the error is dominated by the first eigenmode. 

Assume k Q > ^ ^ k 2 ̂  , ., • ̂  k ^ ^ ^ 0,where k ± is 
the eigenvalue of K, 

and ^* ,i=Q,l,...,LxN-l,are the eigenvectors of K. 
For finite difference equations this assumption has 

been proven to be valid but for the response matrix 
method one has. to assume its validity because the proof 

(3) 
is not available. The positivity of and fl^ 
cannot be proven for the response matrix method, because 
the elements of the response matrices IR̂  are not 
strictly positive. 
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Expand 

LxiJ 

¿=1 

and assume that convergence has reached an asymptotic be­

havior such that ~k[^zz 4 i then for iteration t. 

where 0"=h/L is. the dominance ratio, and 

y{°°* is the fundamental mode to be determined. 

The eigenvector y' can be estimated by two successive 

iterations as 

such that the estimate of the fundamental mode is given by 

where 0~~ is the estimate of dominance ratio obtained by 

a procedure based on the error decay rate as described in 

Ref. 51. 
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Chebyshev Polynomial Method 
The convenient form of the response matrix method 

in order to apply the Chebyshev polynomial method can be 
obtained by rewriting the equations (1.1) as 

/ 2 

or succintly 

1 

j k.— ; 
^ 0 o 

' 1 * 

2 

where 
r 1 -i 

f ' 
• 

assuming that the inverse exists. 
Then the outer iterations can be given by t h e power 

method as 

(t-j) 
0 
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The eigenvalues of P are again assumed 

k„ > k, \ k 0 > . ..>k > 0 and the corresponding eigen-° ^ i. ' t ' LxN-1 ' 
vectors are X i #i=o,...,LxN-l / that is 

Assume a sufficiently converged eigenvalue is avail-
( t) 

able, k„// a k , after t iterations. W ° 
The Chebyshev polynomial method as shown by Hageman 

(53) 
and Pfexfer ' can be derxved by choosxng the accelerated 

solutions as a linear combination of eigenvector iterates 

such that 

# +Q*pt . CI-5) 

Expanding 

normalized such, that c^=l, the equation (.1.5) becomes 
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P 

and if one defines f~^((jj = / ^ ' e < 3 u a t i o n 

becomes 

"""" Jo ' ~~ 

The accelerated solution is obtained by choosing 
P (y) such that P (1) =1 and max P_(y) is minimized," 

F p o^<r 1 p 1 

which is the classical Chebyshev minimax property. The 
polynomials P_.(y) are therefore Chebyshev polynomials 

XT given by 

where 
• r 

(p ^jf) , -l$y<>l 

Using the recursion relationship for Chebyshev 
polynomials, the acceleration scheme can be given by the 
algorithm 
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7LJL 

where 

(F~. is the estimate of dominance ratio ob­
tained from the decay rate of the error 

0~= <J!tnn 

where 
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APPENDIX II 
VARIATIONAL FORMULATION OF DIFFUSION EQUATION 

The quadratic functional (the definition of each term 
is given in Chapter 31 for the coarse mesh —&m 

has a minimum for j « a> , where <p is the solution 
'<n rryy T*r) 

of the diffusion equation (assembly level calculations) 

subject to the boundary condition 

and the interface conditions of continuity of current and 

flux. 
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PROOF; Define the bilinear functional 

and use the definitions in Chapter 3 for the volume and 
boundary inner products to express F ( ^ ) as follows 

(II.3) 

Now multiply equation (II.2) by ^ (r) and integrate 

over J7^ , 

Jrje)[-V. fa) vi +ft (e)Zj*) 
III.4) 

The objective is. to include the boundary condition 
on <f-S^m £>y an integration by parts; however, (r) 
(. € ) is a continuous function with discontinuous first 
derivatives within —^2^ and one cannot directly integrate 
equation (II. 4) by parts. But if the domain is partitioned 
in M subdomains —/2«.__ , m-l,...,M, such that *r (r) 

* - / W err) ' ' / m 

has continuous first derivatives within each ^{2^^ / the 
integral involving the derivative can be expressed as a 
summation of integrals yielding 



125 

Denoting the summation term as -27 , each integral in 

the summation can be integrated by parts to yield 

where /?? (,.rsl is the vector normal to the boundary cu?^^ 

But the interface condition of continuity of current, 

-J^fdJV^Ûl)' eliminates all of the interior surface inte­

grals, and the boundary condition on the outer boundary 

S~Qm can be applied to yield 
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Inserting 2 into equatidn (II.5) yields 

32, 
which, in terms of / / ^ ^ a n d the volume and boundary 

inner products can be written as 

(II.6) 

or rearranging 

Inserting equation (.11.7) into equation (II. 3), 

r(ty ir(t, t) t)+ <v:-h, t > 
CII.8) 

But since 
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and 

the equation (II. 8) can be rewritten as 

r(t)-Mt-<k,t-i)-Jr(i,i)- % > 
(II.9) 

+£«i;,V:>+i<%,%y • 
The val ue of the functional at 

(11.10) 

+£<v':, v:>-
Subtracting equation (.11.10) from equation (II.9) one gets 

F(fJ-F(lhlr(K-&,t-i)+i <t & > 

-<Kt> + £<%X> 
or 

Ffo)-r&J+jt-(t-L %-&)+£<&-1 i-t > 

and for <fm ^ , 41* £ /Jg / 

,for all % eHt . 
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where >̂ is the solution of the diffusion equation (II. 2) 

subject to the irradiation of J n ( r s ) * 

Therefore, F ( % ) is minimized by , as was to be 

proven. 

Galerkin Approximation 

The Galerkin approximation for variational problem 

(TI.l), can be derived assuming that F( ̂  ) has a minimum 

at ^ é" f-j z , which implies that has a 

minimum at t=0 for arbitrary ^ 1 , or 
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results in 

Ht, %) - fa, %) + { t,%y. 
Then using the definition of a ( </> f ^ ) in Chapter 3, 
one obtains 

which is the Galerkin approximation derived in Chapter 3. 

Ritz-Galerkin Approximation 
The Ritz-Galerkin approximation can be obtained by 

admitting the solution defined by equation (3.8)in Chapter 3, 
in order to minimize the functional F( ^ ) . 

Rewriting' the functional (II. 3) as 

F(Z)=P(%, %) -z fa, 1 v:> 

- +•£<%,%.> 
and inserting the approximation (.3.8) of Chapter 3, 
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(11.11) 

Then from the definition \of a ( f^'t^) from Chapter 3, 
equation (11.11) can be rewritten as 

A/-e 

which is the Ritz-Galerkin approximation. 

By imposing x-r ) - 0 for all k=l,...,Ne, the sta-
tionary point which coincides with the minimum of F( yff ) 
is obtained. 
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APPENDIX III 

INTERPRETATION OF THE BLOCK-JACOBI SPECTRAL NORM 

The spectral norm of the block-Jacobi matrix shown in 
(2) 

Fig. 4.5 can be given by the largest absolute row sum. 

From the definition of the matrices T^fi,;}), k=l,...,4, 

given in Sec. 4.2 and observing the block-row (i,j), the 

block-Jacobi row sum is given by the row sum of the 

response matrix IB? (i, j). Therefore the spectral norm 

can be given by the largest absolute row sum of all response 

matricesJR J (i,j), i=l,...,i m a x; j = l , • • • / J m a x « 

A physical interpretation of the spectral norm 

can be obtained by assuming a simpler situation, where the 

partial currents on each, face of the coarse mesh are 

assumed spatially constant. In this case no negative ele-^ 

ment is possible (Table 4.1 and 4.2) in the response matrix 

JR5 (i,j) because a positive inward partial current on any 

face of the coarse mesh must y!ield positive outward partial 

currents from each face of the coarse mesh. 

If an inward partial current of constant magnitude is 

considered. 
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J +(i,J) = 

1st row sum of IR (i,j)' 
2nd row sum of (R (i,j) 
3rd row sum of (RJ (i,j) 
_4th row sum of (RJ(i,j) 

Since the magnitude of the outward partial current 
must he less than the magnitude of the inward partial 
current, every element of J+(i,j) must be less than unity, 
and it can be interpreted as the probability of an incident 
neutron to emerge from a boundary of the coarse mesh without 
being absorbed or outscattered. 

Because every element of iRJ(i,j) is positive, each 
element of J+(i,j) coincides with the absolute row sum of 
(RJ (i,j). Therefore the spectral norm of the block-Jacobi 
matrix may be interpreted as the largest probability of an 
incident neutron to emerge from some side of any coarse 
mesh. Equivalently, the spectral norm is the largest 
transmission or reflection probability in the system. 

Therefore the block-Jacobi matrix will have a larger 
spectral norm for coarse meshes with smaller dimensions 
or decreased absorption+removal cross section, since the 
transmission probability in each case will increase. 

the outward partial current is given, in the absence of 
internal sources, by 
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APPENDIX IV 
DIFFUSION GROUP CONSTANTS 

The one-group diffusion constants for the simplified 
200cm x 200cm bare reactor used for fixed source calcu­
lations are given in Table IV.1. 

Table IV.1 One-group diffusion constants for 
bare homogeneous reactor. 
(Source = 1.0/s/cm3). 

D (cm) jTj/cm/b) ^(/cm/b) B^(/cm2) 

.90 .10 .09 0.0 

The two-group diffusion constants for 2D-IAEA bench­
mark problem^^ and Biblis benchmark problem^^ are 
given in Tables IV. "3 and IV.2 , respectively. 
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T a b l e IV.2 - Two-group d i f f u s i o n c o n s t a n t s f o r 
B i b l i s benchmark p r o b l e m . ( 5 6 ) 

(BJ; = 0 . 0 , X ^ 1 - 0 > X 2 = 0 - ° ) 

ZONE G
RO

UP
 

2? 7' T 
1 1 1 . 4 3 6 0 . 0 0 9 5 0 4 2 . 0023768 . 0 0 5 8 7 0 8 . 0 1 7 7 5 4 

2 . 3 6 3 5 . 0 7 5 0 0 5 8 . 0 3 8 8 9 4 0 . 0 9 6 0 6 7 0 

2 1 1 . 4366 . 0 0 9 6 7 8 5 . 0025064 . 0 0 6 1 9 0 8 . 017621 

2 .3636 . 0 7 8 4 3 6 0 . 0419350 . 1035800 

3 1 1 . 3200 . 0026562 . 0 . 0 . 0 2 3 1 0 6 

2 .2772 . 0 7 1 5 9 6 0 . 0 . 0 

4 1 1 . 4389 . 0 1 0 3 6 3 0 .0030173 . . 0074527 . 017101 

2 . 3 6 3 8 . 0 9 1 4 0 8 0 . 0535870 . 1 3 2 3 6 0 0 

5 1 1 . 4381 . 0 1 0 0 0 3 0 . 0 0 2 5 0 6 4 . 0 0 6 1 9 0 8 . 0 1 7 2 9 0 

2 . 3 6 6 5 . 0 8 4 8 2 8 0 . 0 4 1 9 3 5 0 . 1 0 3 5 8 0 0 

6 1 1 . 4 3 8 5 . 0101320 . 0 0 2 6 0 2 6 . 0 0 6 4 2 8 5 . 0 1 7 1 9 2 

2 . 3 6 6 5 . 0 8 7 3 H 0 . 0 4 4 1 7 4 0 . 1 0 9 1 1 0 0 

7 1 1 . 4389 . 0 1 0 1 6 5 0 . 0025064 . 0 0 6 1 9 0 8 . 0 1 7 1 2 5 

2 . 3679 . 0 8 8 0 2 4 0 . 0 4 1 9 3 5 0 . 1 0 3 5 8 0 0 

8 1 1 . 4393 . 0102940 . 0026026 . 0 0 6 4 2 8 5 . 0 1 7 0 2 7 

2 . 3 6 8 0 . 0905100 . 0 4 4 1 7 4 0 . 1 0 9 1 1 0 0 
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Table IV.3 Two-group diffusion constants for 
2D-IAEA benchmark problem. 
(B2=.8xl0- 4cm- 2). 

2 

Zone D 1 D 2 

•^-21 ¿~ a X 1 X 2 
material 

1 1.5 .4. .02. . ...01 ; .08. . .135 . 1... .0 . fuel 1 

2 1.5 .4 .02 .01 .085 .135 1. .0 fuel 2 

3 1.5 .4 .02 .01 .13 .135 1. .0 fuel2+rod 

4 2.0 .3 .04 .0 .01 .0 0. .0 reflector 
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